Cho x, y thay đổi thỏa mãn 0<x<1, 0<y<1.
Tìm GTLN của biểu thức: P=\(x+y+x\sqrt{1-y^2}+y\sqrt{1-x^2}\)
\(\text{Với x,y,z là các số thực dương thay đổi và thỏa mãn 1/x+1/y+1/z=3. Tìm giá trị lớn nhất của biểu thức}:P=\frac{1}{\sqrt{2x^2+y^2+3}}+\frac{1}{\sqrt{2y^2+z^2+3}}+\frac{1}{\sqrt{2z^2+x^2+3}}\)
1) TÌm giá trị lớn nhất và nhỏ nhất của biểu thức P =\(\sqrt{x-1}+\sqrt{3-x}\)
2) Giải phương trình \(x^2+9x+21=\sqrt{2x+9}\)
3) Cho x ,y thay đổi thỏa mãn\(0< x< 1;0< y< 1\)
Tìm giá trị lớn nhất của biểu thức P =\(x+y+x\sqrt{1-y^2}+y\sqrt{1-x^2}\)
4) Cho các số dương a,b,c,d thỏa mãn \(ab+bc+ca=1\)
Chứng minh rằng: \(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\ge\sqrt{\frac{\left(a+b\right)\left(a+c\right)}{a^2}}+\sqrt{\frac{\left(b+c\right)\left(b+a\right)}{b^2}}+\sqrt{\frac{\left(c+a\right)\left(c+b\right)}{c^2}}\)
Cho x,y,z là các số dương thay đổi và luôn thỏa mãn điều kiện xyz=1. Tìm giá trị nhỏ nhất của biểu thức :
\(P=\frac{x^2\left(y+z\right)}{y\sqrt{y}+2z\sqrt{z}}+\frac{y^2\left(z+x\right)}{z\sqrt{z}+2x\sqrt{x}}+\frac{z^2\left(x+y\right)}{x\sqrt{x}+2y\sqrt{y}}\)
Bài 1:
Cho số thực x. Với \(x\ge1\).Tìm giá trị nhỏ nhất của biểu thức
\(A=\sqrt{x-2\sqrt{x-1}}+5.\sqrt{x+3-4.\sqrt{x-1}}+\sqrt{x+8-6.\sqrt{x-1}}\)
Bài 2:
Tìm giá trị lớn nhất và giá trị nhỏ nhất của biểu thức:
\(y=\frac{x^2}{x^2-5x+7}\)
Bài 3:
Cho hai số dương x,y thay đổi nhưng luôn thỏa mãn điều kiện \(\frac{2}{x}+\frac{3}{y}=6\)
Tìm giá trị nhỏ nhất của x+y
cho x,y>0 thỏa mãn x+y=1.tìm giá trị lớn nhất,giá trị nhỏ nhất của các biểu thức: A= 1/x^2+y^2 +1/xy,B= 1/x^2+y^2+3/4xy
Cho x,y thỏa mãn 0<x<1 , 0<y<1. Tìm giá trị nhỏ nhất của \(M=x+y+x\sqrt{1-y^2}+y\sqrt{1-x^2}\)
Cho hai số thực c,y khác 0 thay đổi thỏa mãn điều kiện (x+y)xy=x2+y2-xy
Tính giá trị lớn nhất chủa biểu thức \(A=\frac{1}{x^3}+\frac{1}{y^3}\)
Cho x,y,z là các số thực không âm thỏa mãn x + y + z = 1. Tìm giá trị lớn nhất của biểu thức.
\(P=\sqrt{2x^2+x+1}+\sqrt{2y^2+y+1}+\sqrt{2z^2+z+1}\)