tìm các số nguyên x,y biết : 4x2 +8y2+8xy+4y-8=0
cho x;y;z là 3 số nguyên dương và nguyên tố cùng nhau thỏa mãn \(\frac{1}{x}+\frac{1}{y}=\frac{1}{z}.\)CMR x+y là số chính phương
Cho x, y, p là các số nguyên dương tm
\(\frac{1}{x^2}+\frac{1}{y^2}=\frac{1}{p}\)
CMR nếu p>2 thì p là hợp số
1) Tìm hai số nguyên toó sao cho bình phương của chúng có tổng là 2234.
2) Cho số nguyên dương x. Biết x và 30 là 2 số nguyên tố cùng nhau. CMR: \(x^4-1⋮30\)
3) Cho số nguyên dương x. Biết x và 240 là 2 số nguyên tố cùng nhau. CMR: \(x^4-1⋮240\)
4) Cho các số nguyên a và b thỏa mãn \(a^4+b^4⋮15\). CMR: a, b đều chia hết cho 15
5) Cho các số nguyên dương x, y sao cho \(x^2-xy+y^2⋮9\). CMR: x và y đều chia hết cho 9
Làm được đến đâu thì làm nhé. Ai nhanh và đúng thì mình sẽ tick và add friends nhé. Thanks. Please help me!!!
1.cho n là hợp số. CM: 2n - 1 là hợp số
2. Cho p và p2 + 2 là các số nguyên tố. CMR: p3 + p2 + 1 là số nguyên tố
3. Tìm x;y;z thuộc N* tm: \(\frac{x+y\sqrt{2019}}{y+z\sqrt{2019}}\)là hữu tỉ và x2 + y2 + z2 nguyên tố
1) Cho hai số nguyên dương x,y lớn hơn 1, x khác y thỏa mãn \(x^2+y-1⋮y^2+x-1.\). Chứng minh rằng \(y^2+x-1\)không thể là lũy thừa của 1 số nguyên tố.
2) Tồn tại không các số nguyên dương x, y sao cho \(x^5+4^y\)là lũy thừa của 11.
3)Tìm tất cả các cặp số (x,y) nguyên dương thỏa mãn \(x^3-y^3=13\left(x^2+y^2\right)\)
4)Tìm tất cả các số nguyên dương n thỏa mãn \(n^5+n+1\)là lũy thừa của số nguyên tố.
5)Cho 2 số nguyên dương x,y thỏa mãn \(2x^2+11xy+12y^2\)là lũy thừa của số nguyên tố. Chứng minh rằng x=y.
6)Tìm tất cả các số nguyên tố p sao cho \(\frac{p+1}{2}\)và\(\frac{p^2+1}{2}\)đều là số chính phương.
7)Tìm tất cả các cặp số nguyên dương p, q với p nguyên tố thỏa mãn \(p^3+p^2+6=q^2+q\)
1) có bao nhiêu cặp số nguyên dương (x,y) sao cho \(\frac{2015}{x^2-y^2}\)là 2 số tự nhiên
2)tìm cặp số tự nhiên (a,b) sao cho a2+b2 và a2-b2 đều là ước của 2015
3) có bao nhiêu bộ 3 các số nguyên dương(a,b,c) tm a+b+c=6
Bài 8. Cho số nguyên dương n. Tồn tại hay không số nguyên dương d thỏa mãn: d là ước của 3n^2 và n^2 +d là số chính phương. Bài 9. Chứng minh rằng không tồn tại hai số nguyên dương x, y thỏa mãn x^2 +y+1 và y^2 +4x+3 đều là số chính phương.
Ai đó giúp mình đi mòaa🤤🤤🤤
a, Tìm x, y nguyên thỏa mãn:
\(x^3y+x^2y^2-x^2y+x+y+xy-y=1\)
b, Tìm số nguyên tố p sao cho các số: 2p2 - 1; 2p2 + 3; 3p2 + 4 đều là các số nguyên tố.