6x+11y chia hết cho 31
=> 6x + 11y + 31y chia hết cho 31 (vì 31y cũng chia hết cho 31)
=> 6x + 42y chia hết cho 31
=> 6(x+7y) chia hết cho 31
Vì 6 và 31 nguyên tố cũng nhau nên x+7y cũng phải chia hết cho 31 (ĐPCM)
6x+11y chia hết cho 31
=> 6x + 11y + 31y chia hết cho 31 (vì 31y cũng chia hết cho 31)
=> 6x + 42y chia hết cho 31
=> 6(x+7y) chia hết cho 31
Vì 6 và 31 nguyên tố cũng nhau nên x+7y cũng phải chia hết cho 31 (ĐPCM)
Cho x,y là số nguyên, chứng minh rằng 6x + 11y chia hết cho 31 khi và chỉ khi x + 7y chia hết cho 31
1 ) cho x , y thuộc z . CMR : 6x + 11y chia hết cho 31 khi và chỉ khi x + 7y chia hết 31
CMR(6x+11y) chia hết cho 31 khi và chỉ khi x+7y chia hết cho 41. Với mọi x, y thuộc N
Cho x,y thuộc Z. Chứng minh rằng (6x+11y) chia hết cho 31 khi và chỉ khi (x+7y) chia hết cho 31
Cho x,y thuộc Z. CMR nếu 6x+11y chia hết cho 31 thì x+ 7y cũng chia hết cho 31. Ngược lại x+7y chia hết cho 31 thì 6x+ 11y cũng chia hết cho 31
Cho x,y là số nguyên, chứng minh rằng 6x + 11y chia hết cho 31 khi và chỉ khi x + 7y chia hết cho 31
Các bạn giải giúp nha. Xin chân thành cảm ơn !
Mình sẽ lik-e cho các bạn. Hứa. Thề. Đảm bảo
Cho x;y thuộc z
CMR nếu 6x+11y chia hết cho 31 thi x+7y cùng chia hết cho 31. Ngược lại nếu x+7y chia hết cho 31 thì 6x+11y cũng chia hết cho 31
cho x,y là các số nguyên. CMR: nếu 6x+11y chia hết cho 31 thì x+7y chia hết cho 31
điều ngược lại thì có đúng không
chứng minh rằng 6x+11y chia hết cho 31 x,y là số nguyên thì x+7y cũng chia hết cho 31