(x+1)2 .y = 4x
+x =- 1 không thỏa mãn
+ \(y=\frac{4x}{\left(x+1\right)^2}=\frac{4x-\left(x+1\right)^2}{\left(x+1\right)^2}+1=-\frac{\left(x-1\right)^2}{\left(x+1\right)^2}+1\le1\)
=>y max = 1 => x =1
(x+1)2 .y = 4x
+x =- 1 không thỏa mãn
+ \(y=\frac{4x}{\left(x+1\right)^2}=\frac{4x-\left(x+1\right)^2}{\left(x+1\right)^2}+1=-\frac{\left(x-1\right)^2}{\left(x+1\right)^2}+1\le1\)
=>y max = 1 => x =1
cho (x,y) là nghiệm của pt \(x^2y+2xy-4x+y=0\). Tìm giá trị lớn nhất của y.
1) Gọi nghiệm của hệ phương trình 2x+y=5 và 2y-x=10K + 5 là (x;y)
Tìm K để B = (2x+1)(y+1) đạt giá trị lớn nhất
2) Cho hệ phương trình x-2y=3-m và 2x+y=3(m+2). Gọi nghiệm của hệ phương trình là (x;y). Tìm m để x^2 + y^2 đạt giá trị nhỏ nhất
Cho pt 2x^2+2mx+m^2-2=0. Tìm m để pt có 2 nghiệm sao cho: A=giá trị tuyệt đối của 2x1x2+x1+x2-4 đạt giá trị lớn nhất
Tìm giá trị lớn nhất của tích xy biết \(|2y-x|\le2\) và \(|4x+y|\le10\)
Tìm giá trị lớn nhất, giá trị nhỏ nhất của biểu thức \(y=\dfrac{x^2+2}{x^2+x+1}\)
Cho hai số x>0,y>0 và \(\sqrt{x}\) + \(\sqrt{y}\)= 1
Tìm giá trị nhỏ nhất và giá trị lớn nhất của biểu thức E= x\(\sqrt{x}\)+ y\(\sqrt{y}\)
Cho hệ phương trình x+my=m+1 mx+y=3m-1 Tìm giá trị của m để hệ phương trình có nghiệm duy nhất (x;y) thỏa mãn x+y
1, Chứng minh pt: x2 + mx + m -1=0 luôn có nghiệm với mọi giá trị của m
b, Giả xử x1,x2 là 2 nghiệm của pt đã cho, tìm giá trị nhỏ nhất của biểu thức B= x21 + x21 -4(x1+x2)
2, cho pt bậc hai x2 +5x + 3 = 0 có 2 nghiệm x1,x2. Hãy lập một pt bậc hai có 2 nghiệm (x21 + 1) và (x22 + 1)
Cho hai số thực x, y thỏa x^2+xy+y^2=1. TÌm giá trị lớn nhất của biểu thức: P=x^3*y+y^3*x