Cho x,y là các số thực dương thỏa mãn x+ 3y \(\le\) 10
Chứng minh rằng \(\frac{1}{\sqrt{x}}+\frac{27}{\sqrt{3y}}\ge10\)
Dấu đẳng thức xảy ra khi nào ?
Cho x,y là các số thực dương thỏa mãn \(x+3y\le10\)
Chứng minh rằng \(\frac{1}{\sqrt{x}}+\frac{27}{\sqrt{3y}}\ge10\)
Dấu đẳng thức xảy ra khi nào ???
cho x,y là các số thực dương thỏa mãn (x+1)(y+1)=4xy. chứng minh \(\frac{1}{\sqrt{3x^2+1}}+\frac{1}{\sqrt{3y^2+1}}\le1\)
Cho x,y là các số thực dương thỏa mãn: (x+1)(y+1)=4xy
Chứng minh rằng: \(\frac{1}{\sqrt{3x^2+1}}+\frac{1}{\sqrt{3y^2+1}}\le1\)
Cho 3 số thực dương x,y,z thỏa mãn x+y+z=3.
CMR: \(\frac{x}{x+\sqrt{3x+yz}}\) + \(\frac{y}{y+\sqrt{3y+zx}}\) + \(\frac{z}{z+\sqrt{3z+xy}}\)\(\le\)1
1. Cho a,b,c là các số dương a+b+c=1. Tìm GTLN của P=\(\sqrt{\frac{ab}{c+ab}}+\sqrt{\frac{bc}{a+bc}}+\sqrt{\frac{ca}{b+ca}}\)
2. Cho x, y là các số dương thỏa mãn x+y=2. Chứng minh
\(x^3y^3\left(x^3+y^3\right)\le2\)
Cho \(x,y,z\)là các số dương thỏa mãn \(x+y+z=3\)
CM:\(\frac{x}{x+\sqrt{3x+yz}}+\frac{y}{y+\sqrt{3y+zx}}+\frac{z}{z+\sqrt{3z+xy}}\le1\)
Cho x, y, z là 3 số dương thỏa mãn: x+y+z=3. Chứng minh rằng:
\(\frac{x}{x+\sqrt{3x+yz}}+\frac{y}{y+\sqrt{3y+xz}}+\frac{z}{z+\sqrt{3z+xy}}\le1\)
Cho x,y,z là 3 số dương thỏa mãn x+y+z=3
Chứng minh rằng \(\frac{x}{x+\sqrt{3x+yz}}+\frac{y
}{y+\sqrt{3y+zx
}}+\frac{z}{z+\sqrt{3z+xy}}\le1
\)
Các bạn giúp mình với :(((