Áp dụng BĐT bu-nhi-a , ta có \(\left(\sqrt{x+3}+2\sqrt{y+3}\right)^2\le\left(1+2\right)\left(x+3+2y+6\right)\le36\)
=> \(S\le6\)
dấu = xảy ra <=> x=y=1
Áp dụng BĐT bu-nhi-a , ta có \(\left(\sqrt{x+3}+2\sqrt{y+3}\right)^2\le\left(1+2\right)\left(x+3+2y+6\right)\le36\)
=> \(S\le6\)
dấu = xảy ra <=> x=y=1
Cho ba số thực dương x, y, z thỏa mãn: \(x+2y+3z=2\). Tìm GTLN của biểu thức: \(S=\sqrt{\dfrac{xy}{xy+3z}+}\sqrt{\dfrac{3yz}{3yz+x}+}\sqrt{\dfrac{3xz}{3xz+4y}}\)
cho x,y là 2 số thực dương thỏa mãn \(|x-2y|\le\frac{1}{\sqrt{x}}\) và \(|y-2x|\le\frac{1}{\sqrt{y}}\). tìm gtln của P=x2+2y
Cho các số dương x,y,z thỏa mãn \(x+y+z\le3\). TÌm GTLN của biểu thức:
\(A=\sqrt{1+x^2}+\sqrt{1+y^2}+\sqrt{1+z^2}+2\left(\sqrt{x}+\sqrt{y}+\sqrt{z}\right)\)
Cho x,y,z là các số thực dương thỏa mãn \(x^4+\left(y^2-1\right)^2+z^4\le3\)
Tìm GTLN của biểu thức \(A=\sqrt{2}y\left(x+z\right)+\frac{1}{x^2+y^2+z^2+1}\)
Cho x, y, z là các số thực không âm thỏa mãn x+y+z =1
tìm GTLN của biểu thức:
P = \(\sqrt{2x^2+x+1}+\sqrt{2y^2+y+1}+\sqrt{2z^2+z+1}\)
cho 3 số thực dương x,y,z thỏa mãn x+y+z= 3
tìm GTLN của biểu thức P= \(\sqrt{xy+3xz}\)+ \(\sqrt{\frac{y^2+yz}{2}}\)
Cho x, y, z là các số thực dương thỏa mãn :x + y + z = xyz
Tìm GTLN của \(P=\frac{2}{\sqrt{1+x^2}}+\frac{1}{\sqrt{1+y^2}}+\frac{1}{\sqrt{1+z^2}}\)
Cho các số thực dương x,y,z thỏa mãn : \(x^2+y^2+z^2=\frac{3}{7}\)
Chứng minh rằng : \(\sqrt{8+14x}+\sqrt{8+14y}+\sqrt{8+14z}\le3+3\sqrt{7}\)
Cho 3 số thực dương x, y, z thỏa mãn x+y+z=1
Chứng minh rằng \(\dfrac{\sqrt{xy+z}+\sqrt{2x^2+2y^2}}{1+\sqrt{xy}}\ge1\)