Ta có: \(x^6+y^6=\left(x^2\right)^3+\left(y^2\right)^3=\left(x^2+y^2\right)\left(x^4-x^2y^2+y^4\right)\)
\(=\left[\left(x+y\right)^2-2xy\right]\left[\left(x^2+y^2\right)^2-3x^2y^2\right]\)
\(=\left[\left(x+y\right)^2-2xy\right]\left[\left(\left(x+y\right)^2-2xy\right)^2-3x^2y^2\right]\)
\(=\left(16+10\right)\left[\left(16+10\right)^2-3.25\right]=15626\)
Đúng 0
Bình luận (0)