Cho các số x,y,z thỏa mãn x^2+2y^2+z^2-2xy-2y-4z+5=0.Tính giá trị biểu thức A=(x-1)^2020+(y-2)^2020+(z-3)^2020
cho x+y+z=0 và xy+yz+zx=0.Tính Q=(x-1)^2018+(y-1)^2019+(z-1)^2020
Tìm x,y biết x^2018+y^2018=x^2019+y^2019=x^2020+y^2020.
Cho a+b+c=2019, 1/a + 1/b+1/c=1/2019. Tính 1/a^2019+1/b^2019+1/c^2019
Tìm x,y biết x^2-xy=6x-5y-8.
Giúp mk với, mk vã lắm rồi :-( :-(
Cho các số x,y thỏa mãn điều kiện:
\(x^2-2xy+6y^2-12x+2y+41=0\)
Tính giá trị của biểu thức: A=\(\dfrac{2020-2019\left(9-x-y\right)^{2019}-\left(x-6y\right)^{2010}}{y^{2010}}\)
Cho x,y,z thoả mãn:
x^2+2y^2+z^2-2xy-2y-4z+5=0
Tính giá trị của biểu thức:
P=(x-1)^2018+(y-1)^2019+(z-1)^2020
cho 3 số thực a,b,c thoả mãn x+y+z=9 và x^2+y^2+z^2=27 tính (x-4)^2018+(y-4)2019+(z-4)^2020
cho x^2+y^2+z^2=1 và x^5+y^5+z^5=1.
tính x^2020+y^2020+z^2020
Cho x,y thỏa mãn x^2 + y^2 = 6( x - y - 3 ) Tính M = x^2019 + y^2019 + ( x + y )^2020
Cho các số x, y thoả mãn đẳng thức \(5x^2+5y^2+8xy-2x+2y+2=0\)
Chứng minh rằng \(\left(x+y\right)^{2018}+\left(x-2\right)^{2019}+\left(y+1\right)^{2020}=-1\)