nếu ko cần tìm x và y, được sử dụng cô-si thì áp dụng vào biểu thức cần tìm min là được
nếu ko cần tìm x và y, được sử dụng cô-si thì áp dụng vào biểu thức cần tìm min là được
cho x,y,z>0 va xyz \(\ge\)1 ,tim min
\(x^3+y^3+z^3+\frac{2z}{x+y}+\frac{2x}{y+z}+\frac{2y}{z+x}\)
Cho x>0, y>0 và x+y\(\ge\)4 . Tìm Min của P=2x+3y+\(\frac{6}{x}+\frac{10}{y}\)
cho x,y,z>0 và \(\frac{1}{x}+\frac{1}{z}+\frac{1}{y}=4\)
tìm min M: \(M=\frac{1}{2x+y+z}+\frac{1}{x+2y+z}+\frac{1}{x+y+2z}\)
Câu 21:
\(\frac{1}{2}\left(\frac{x^{10}}{y^2}+\frac{y^{10}}{x^2}\right)+\frac{1}{4}\left(x^{16}+y^{16}\right)-\left(1+x^2y^2\right)^2\ge x^4y^4+\frac{x^8y^8}{2}-1-2x^2y^2-x^4y^4=\left(x^2y^2-1\right)^2+\frac{1}{2}\left(x^4y^4-1\right)^2-\frac{5}{2}\ge-\frac{5}{2}.\)
Dấu = xảy ra khi x=y=1
Cho x,y>0. Tìm min M = \(8\left(x^4+y^4\right)+\frac{1}{x^5}+\frac{1}{y^5}+\frac{1}{x^2y^2}-\frac{40}{xy}\)
Cho x,y,z là các số dương và x+y+z \(\ge1\) . CM :
\(\sqrt{x^2+\frac{1}{x^2}}+\sqrt{y^2+\frac{1}{y^2}}+\sqrt{z^2+\frac{1}{z^2}}\ge\sqrt{82}\)
cho các số thực dương x,y,z thoả mãn \(xy\ge1,z\ge1\)
chứng minh BĐT \(\frac{x}{y+1}+\frac{y}{x+1}+\frac{z^3+2}{3\left(xy+1\right)}\ge\frac{3}{2}\)
Cho hai số thực x , y biết \(xy=\frac{1}{2}\)
CMR: \(\frac{x^2+y^2}{x^2y^2}+\frac{x^2y^2}{x^2+y^2}\ge\frac{17}{4}\)