Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Đặng Thị Ngọc Anh

Cho x^2+y^2+z^2=xy + yz+zx. Tính giá trị M = (x-y+1)^2019 + (y+z+1)^2020

ミŇɦư Ἧσς ηgu lý ミ
1 tháng 11 2020 lúc 10:55

M+2019=2xy−yz−zx+2020M+2019=2xy−yz−zx+2020

=2xy−yz−zx+x2+y2+z2=2xy−yz−zx+x2+y2+z2

=(x+y−z2)2+3z24≥0=(x+y−z2)2+3z24≥0

⇒Mmin=0⇒Mmin=0 khi ⎧⎩⎨⎪⎪⎪⎪x+y−z2=03z24=0x2+y2+z2=2020{x+y−z2=03z24=0x2+y2+z2=2020

⇔⎧⎩⎨⎪⎪x+y=0z=0x2+y2=2020⇔{x+y=0z=0x2+y2=2020 ⇒⎧⎩⎨⎪⎪x=±1010−−−−√y=−xz=0

Khách vãng lai đã xóa
Đặng Thị Ngọc Anh
1 tháng 11 2020 lúc 10:57

mình không hiểu ạ

Khách vãng lai đã xóa
l҉o҉n҉g҉ d҉z҉
1 tháng 11 2020 lúc 11:10

x2 + y2 + z2 = xy + yz + zx

⇔ 2( x2 + y2 + z2 ) = 2( xy + yz + zx )

⇔ 2x2 + 2y2 + 2z2 = 2xy + 2yz + 2zx

⇔ 2x2 + 2y2 + 2z2 = 2xy + 2yz + 2zx

⇔ 2x2 + 2y2 + 2z2 - 2xy - 2yz - 2zx = 0

⇔ ( x2 - 2xy + y2 ) + ( y2 - 2yz + z2 ) + ( z2 - 2xz + x2 ) = 0

⇔ ( x - y )2 + ( y - z )2 + ( z - x )2 = 0

Vì : \(\hept{\begin{cases}\left(x-y\right)^2\\\left(y-z\right)^2\\\left(z-x\right)^2\end{cases}}\ge0\forall x,y,z\)=> ( x - y )2 + ( y - z )2 + ( z - x )2 ≥ 0 ∀ x, y, z

Dấu "=" xảy ra <=> \(\hept{\begin{cases}x-y=0\\y-z=0\\z-x=0\end{cases}}\Leftrightarrow x=y=z\)

Khi đó M = ( x - y + 1 )2019 + ( y - z + 1 )2020 < đã sửa >

               = ( x - x + 1 )2019 + ( y - y + 1 )2020

               = 12019 + 12020

               = 1 + 1 = 2

Khách vãng lai đã xóa

Các câu hỏi tương tự
Phạm Ngọc Thu Minh
Xem chi tiết
Trà Nhật Đông
Xem chi tiết
Bảo Thiii
Xem chi tiết
Phoenix_Alone
Xem chi tiết
Phương Thảo Ngô
Xem chi tiết
BuBu siêu moe 방탄소년단
Xem chi tiết
Nguyễn Mạnh Hiếu
Xem chi tiết
Phạm Ngọc Mai
Xem chi tiết
phùng tấn dũng
Xem chi tiết