Xét \(x^2+y^2-xy=4\)
\(\Rightarrow x^2-2xy+y^2+xy=4\)
\(\Rightarrow\left(x-y\right)^2+xy=4\)
\(\Rightarrow xy=-\left(x-y\right)^2+4\)
Lại có: \(C=x^2+y^2=xy+4\)
\(=-\left(x-y\right)^2+4+4\)
\(=-\left(x-y\right)^2+8\)
Vì \(\left(x-y\right)^2\ge0\forall x,y\)
\(\Rightarrow-\left(x-y\right)^2\le0\forall x,y\)
\(\Rightarrow-\left(x-y\right)^2+8\le8\forall x,y\)
hay\(C\le8\forall x,y\)
GTLN là 8
Dấu "=" xảy ra khi: \(\left(x-y\right)^2=0\Rightarrow x=y\)
#DDN