\(A=x_1.x_2=\sqrt{\left(3+\sqrt{5}\right)\left(3-\sqrt{5}\right)}=\sqrt{3^2-\sqrt{5^2}}=\sqrt{9-5}=\sqrt{4}=2\)
\(B=x^2_1+x^2_2=\sqrt{\left(3+\sqrt{5}\right)^2}+\sqrt{\left(3-\sqrt{5}\right)^2}=3+\sqrt{5}+3-\sqrt{5}=6\)
\(A=x_1.x_2=\sqrt{\left(3+\sqrt{5}\right)\left(3-\sqrt{5}\right)}=\sqrt{3^2-\sqrt{5^2}}=\sqrt{9-5}=\sqrt{4}=2\)
\(B=x^2_1+x^2_2=\sqrt{\left(3+\sqrt{5}\right)^2}+\sqrt{\left(3-\sqrt{5}\right)^2}=3+\sqrt{5}+3-\sqrt{5}=6\)
lập phương trình có hai nghiệm x1,x2 được cho trong mỗi trường hợp sau:
a) x1 = -4, x2 = 7
b) x1 = \(\sqrt{5}\)
c)x2 = 3+\(\sqrt{5}\)
d) x1-x2=4
e) x12 + x22=17
làm giúp e với ạ e đang gấp
Cho phương trình x2-2(m+1)x+m2=0 có hai nghiệm phân biệt x1;x2 thỏa mãn x12 +x22=4\(\sqrt{x_1x_2}\).Khi đó m bằng
A.-3+\(\sqrt{7}\) B.3-\(\sqrt{7}\) C.-3-\(\sqrt{7}\) D.-3-\(\sqrt{7}\) hoặc -3+\(\sqrt{7}\)\
Không cần giải thích ạ
cho PT: x2-2mx 2m-2=0(1) m là tham số
a) GPT(1) khi m=1
b)CM: PT(1) luôn có 2 nghiệm x1, x2 với các giá trị nào của tham số m thì x12 x22=12c) với x1, x2 là 2 nghiệm của pt (1) , tìm giá trị lớn nhất của biểu thức A= 6(x1 x2)/x12 x12 4(x1 x2)
Cho phương trình x2-(m+5)x+2m+6=0 (với m là tham số).Tìm m để phương trình đã cho có các nghiệm x1 x2 thỏa mãn x12 + x12 =35
cho pt : x2 - 4x + m + 1 = 0
a.Giải pt khi m=2
b.tìm giá trị của m để pt có 2 nghiệm x1,x2 thỏa mãn đẳng thức x12+x22=5(x1+x2)
Cho phương trình: x2-2(m-1)x-2m=0 với m là tham số.Tìm các giá trị của m để phương trình có hai nghiệm x1, x2 thỏa mãn x12+x1-x2=5-2m.
Cho phương trình 2x^2 - 6x +3 =0
a) chứng tỏ phương trình trên có 2 nghiệm phân biệt x1 x2
b) Không giải phương trình để tìm 2 nghiệm x1, x2, hãy tính giá trị của biểu thưc A= 2x1 +x1.x2 +2x2 phần x12 .x2 +x1.x22
Cho phương trình x2- mx + m –1 =0 ( 1)
a) Giải pt khi m = 4
b) Cho biết x1, x2 là hai nghiệm của pt (1). tính x1 + x2 ; x1 . x2 ; x12 + x22 ; x14+ x24