Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Nguyễn Thị Hà Trang

cho x>0, y>0 thỏa mãn 1/x+1/y=1/2. tìm giá trị nhỏ nhất của A= \(\sqrt{x}+\sqrt{y}\)

Dương Lam Hàng
29 tháng 8 2018 lúc 9:30

Vì x>0; y>0

Nên áp dụng BĐT Cô-si ta có: \(x+y\ge2\sqrt{xy}\)

\(\Rightarrow\)\(\frac{1}{x}+\frac{1}{y}\ge2\sqrt{\frac{1}{x}.\frac{1}{y}}=2\sqrt{\frac{1}{xy}}\)

Mà \(\frac{1}{x}+\frac{1}{y}=\frac{1}{2}\)

Nên \(\frac{1}{2}\ge2.\frac{1}{\sqrt{xy}}\Rightarrow\frac{1}{4}\ge\frac{1}{\sqrt{xy}}\)

\(\Rightarrow4\le\sqrt{xy}\) (C)

Ta có: \(\sqrt{x}+\sqrt{y}\ge2\sqrt{\sqrt{xy}}\)

Thế (C) vào ta được: \(\sqrt{x}+\sqrt{y}\ge2\sqrt{4}=4\)

Dấu "=" xảy ra <=> x = y

Vậy AMin = 4 khi và chỉ khi x = y

Đinh quang hiệp
29 tháng 8 2018 lúc 15:20

\(\frac{1}{x}+\frac{1}{y}>=\frac{4}{x+y}\Rightarrow\frac{1}{2}>=\frac{4}{x+y}\Rightarrow x+y>=8\left(1\right)\)(bđt svacxo)

\(\frac{1}{x}+\frac{1}{y}>=2\sqrt{\frac{1}{x}\cdot\frac{1}{y}}=\frac{2}{\sqrt{xy}}\Rightarrow\frac{1}{2}>=\frac{2}{\sqrt{xy}}\Rightarrow\sqrt{xy}>=4\Rightarrow2\sqrt{xy}>=8\left(2\right)\)(bđt cosi)

từ \(\left(1\right);\left(2\right)\Rightarrow x+2\sqrt{xy}+y>=8+8=16\Rightarrow\left(\sqrt{x}+\sqrt{y}\right)^2>=16\)

mà \(\sqrt{x}>0;\sqrt{y}>0\Rightarrow\sqrt{x}+\sqrt{y}>=4\)

dấu = xảy ra khi x=y=4

vậy min A là 4 khi x=y=4


Các câu hỏi tương tự
Rider Ghost
Xem chi tiết
doanhoangdung
Xem chi tiết
Nàn Vũ
Xem chi tiết
nguyen thanh trung
Xem chi tiết
luong ngoc tu
Xem chi tiết
Hồ Việt Hoàng
Xem chi tiết
Lê Minh Đức
Xem chi tiết
Trần Hữu Ngọc Minh
Xem chi tiết
....
Xem chi tiết