Từ gt 1/x + 1/y + 1/z = 0 suy ra xy + yz + zx = 0 (1)
Mặt khác x + y + z =1. Bình phương 2 vế ta đc : : x2 + y2 + z2 + 2(xy + yz + zx) = 1 (2)
Từ (1) và (2) suy ra x2 + y2 + z2 =1. Vậy A =1
Minh lam them cach khac nua gop vui: x^2 + y^2 + z^2 = (x+y)^2 - 2xy + z^2 = (1- z)^2 - 2xy + z^2 = 1 - 2z - 2xy + 2z^2
Tuong tu = 1 - 2x - 2yz + 2z^2 = 1 - 2y - 2zx + 2x^2. Cộng vế theo vế của 3 đẳng thức trên ta được:
3(x^2 + y^2 + z^2) = (1+1+1) - 2(x+y+z) - 2(xy + yz + zx) + 2(x^2 + y^2 + z^2) <=> x^2 + y^2 + z^2 = 3 - 2.1 - 2xyz(1/x + 1/y + 1/z) = 1