bạn có thể dùng bđt phụ này để chứng minh
\(\sqrt{a+b+c}\le\sqrt{a}+\sqrt{b}+\sqrt{c}\le\sqrt{3\left(a+b+c\right)}\)
Dấu "=" xảy ra khi và chỉ khi \(a=b=c\)
bạn có thể dùng bđt phụ này để chứng minh
\(\sqrt{a+b+c}\le\sqrt{a}+\sqrt{b}+\sqrt{c}\le\sqrt{3\left(a+b+c\right)}\)
Dấu "=" xảy ra khi và chỉ khi \(a=b=c\)
CHO X,Y,Z >=0 VÀ X+Y+Z=4 TÌM MAX- MIN CỦA C= \(\sqrt{2X+1}\)+ \(\sqrt{3Y+1}\)+ \(\sqrt{4Z+1}\)
1, Cho x,y: x+y=1 và x>0. Tìm Max A = x2y3
2, Cho x,y,z >0 thỏa mãn : xy+yz+zx=1. Tìm Max \(A=\frac{2x}{\sqrt{x^2+1}}+\frac{y}{\sqrt{y^2+1}}+\frac{z}{\sqrt{z^2+1}}\)
\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=1\) . Tìm Min \(\sqrt{\frac{2x^{3}+3y^{2}}{x+4y}}+\sqrt{\frac{2y^{3}+3z^{2}}{y+4z}}+\sqrt{\frac{2z^{3}+3x^{2}}{z+4x}}\)
1. Cho \(\left\{{}\begin{matrix}x,y,z>0\\x+y+z=\dfrac{3}{4}\end{matrix}\right.\)
Tìm min \(C=\sqrt[3]{x+3y}+\sqrt[3]{y+3z}+\sqrt[3]{z+3x}\)
2. Với a,b,c là đô dài 3 cạnh 1 tam giác
Chứng minh: \(\sqrt[3]{a+b-c}+\sqrt[3]{b+c-a}+\sqrt[3]{c+a-b}\le\sqrt[3]{a}+\sqrt[3]{b}+\sqrt[3]{c}\)
Cho x,y,z>0 và x+y+z=3. Tìm Min A = \(\frac{z}{\sqrt{x^2+5xy+4y^2}}+\frac{x}{\sqrt{y^2+5yz+4z^2}}+\frac{y}{\sqrt{z^2+5zx+4x^2}}\)
Cho x,y,z tjoar mãn x>1/2 y>1/3 z>1 (lớn hơn hoặc bằng) x+y+z bé hơn hoặc bằng 3
Tìm max \(A=\sqrt{2x-1}+\sqrt{3y-1}+\sqrt{z-1}\)
Cho x,y,z>0 và x+y+xyz=z. Tìm Max P= \(\frac{x}{\sqrt{x^2+1}}+\frac{y}{\sqrt{y^2+1}}+\frac{z}{\sqrt{z^2}+1}\)
Biết x,y,z>0, x+y+xy=8. Tìm Max, Min của P=\(\frac{\sqrt{x+1}+\sqrt{y+1}}{xy+1}\)
Cho a,b,c>0 và a+b+c=3 Tìm Min:
\(A=\sqrt{1+x^2}+\sqrt{1+y^2}+\sqrt{1+z^2}+3\left(\sqrt{x}+\sqrt{y}+\sqrt{z}\right)\)