\(P=\frac{x^4}{x^2y^2+x^2yz+z^2x^2}+\frac{y^4}{y^2z^2+xzy^2+x^2y^2}+\frac{z^4}{z^2x^2+xyz^2+y^2z^2}\)
ÁP DỤNG BĐT CAUCHY - SCHWARZ TA ĐƯỢC:
=> \(P\ge\frac{\left(x^2+y^2+z^2\right)^2}{2\left(x^2y^2+y^2z^2+z^2x^2\right)+xyz\left(x+y+z\right)}\) (1)
TA SẼ CHỨNG MINH: \(\frac{\left(x^2+y^2+z^2\right)^2}{2\left(x^2y^2+y^2z^2+z^2x^2\right)+xyz\left(x+y+z\right)}\ge1\) (2)
<=> \(x^4+y^4+z^4+2\left(x^2y^2+y^2z^2+z^2x^2\right)\ge2\left(x^2y^2+y^2z^2+z^2x^2\right)+xyz\left(x+y+z\right)\)
<=> \(x^4+y^4+z^4\ge xyz\left(x+y+z\right)\) (*)
TA ÁP DỤNG LIÊN TỤC 2 LẦN DẠNG BĐT SAU: \(\alpha^2+\beta^2+\gamma^2\ge\alpha\beta+\beta\gamma+\alpha\gamma\)
KHI ĐÓ TA SẼ ĐƯỢC: \(\Rightarrow x^4+y^4+z^4\ge x^2y^2+y^2z^2+z^2x^2\ge xyz\left(x+y+z\right)\)
VẬY BĐT (*) LÀ LUÔN ĐÚNG.
=> TỪ (1) VÀ (2) => \(P\ge1\)
DẤU "=" XẢY RA <=> \(x=y=z\)
VẬY P MIN = 1 <=> x = y = z .