=> \(\frac{x-y}{1}=\frac{x+y}{7}=\frac{xy}{24}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{xy}{24}=\frac{x-y}{1}=\frac{x+y}{7}=\frac{\left(x-y\right)+\left(x+y\right)}{1+7}=\frac{\left(x-y\right)-\left(x+y\right)}{1-7}\)=> \(\frac{xy}{24}=\frac{x}{4}=\frac{y}{3}\)
\(\frac{xy}{24}=\frac{x}{4}\)=>\(\frac{x}{4}.\frac{y}{6}=\frac{x}{4}\)=> \(\frac{y}{6}=\frac{x}{4}:\frac{x}{4}=1\) ( do x khác 0) => y = 6
\(\frac{xy}{24}=\frac{y}{3}\Rightarrow\frac{x}{8}.\frac{y}{3}=\frac{y}{3}\Rightarrow\frac{x}{8}=\frac{y}{3}:\frac{y}{3}=1\) ( do y khác 0) => x = 8
Vậy...