Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Kim Khánh Linh

Cho $x, y$ là các số thực thoả mãn điều kiện $10 x^{2}+\dfrac{1}{x^{2}}+\dfrac{y^{2}}{4}=20$.
Tìm giá trị nhỏ nhất của biểu thức $P=x y$.

Phan Nghĩa
18 tháng 5 2021 lúc 15:22

120

Khách vãng lai đã xóa
IS
18 tháng 5 2021 lúc 15:32

\(10x^2+\frac{1}{x^2}+\frac{y^2}{4}=20\)

\(=>\left(x^2+\frac{1}{x^2}\right)+\left(9x^2+\frac{y^2}{4}\right)=20\)

\(=>\left(x+\frac{1}{x}\right)^2+\left(3x+\frac{y}{2}\right)^2=20\)

Ta có \(x+\frac{1}{x}\ge2\sqrt{\frac{x.1}{x}}\ge2\)dấu = xảy ra khi x=1

=> y=6 

=> MinP=6

Mình nghxi zậy

Khách vãng lai đã xóa

Các câu hỏi tương tự
Kim Khánh Linh
Xem chi tiết
Kim Khánh Linh
Xem chi tiết
Kim Khánh Linh
Xem chi tiết
Kim Khánh Linh
Xem chi tiết