+) Vì y và x tỉ lệ thuận với nhau nên:
y=kx
\Rightarrow y_1=k\cdot x_1
hay 6=k\cdot3
\Rightarrow k=2
Vậy y tỉ lệ thuận với x theo hệ số tỉ lệ 2.
+) Vì y và x tỉ lệ thuận với nhau nên:
y=kx
\Rightarrow y_1=k\cdot x_1
hay 6=k\cdot3
\Rightarrow k=2
Vậy y tỉ lệ thuận với x theo hệ số tỉ lệ 2.
1.Cho x,y là các số nguyên dương sao cho A=\(x^4+y^4\)cũng là số nguyên dương. CMR; x,y đều chia hết cho 3 và 5 . Từ đó tìm giá trị nhỏ nhất của A
1.Cho x,y là các số nguyên dương sao cho A=\(x^4+y^4\) cũng là số nguyên dương. CMR; x,y đều chia hết cho 3 và 5 . Từ đó tìm giá trị nhỏ nhất của A
b1:Xét cặp số nguyên dương (a,b) thỏa mãn điều kiện abba=72.Hỏi a+b nhận giá trị lớn nhất là bao nhiêu
b2:Hỏi có bao nhiêu cặp số nguyên dương (x,y)sao cho 1/x+1/y=1/2020
b3:tìm số nguyên dương N nhỏ nhất ,chia hết cho 99 và tất cả các chữ số của N đều chẵn
Bai1 :Tìm số nguyên dương a lớn nhất sao cho 2004! chia hết cho 7a
Bài 2: Tìm các số nguyên x để D=|x-1|+|x-2| đạt giá trị nhỏ nhất
cho x và y là số nguyên dương tìm giá trị nhỏ nhất của A=| 36x - 5y |
1) Cho A= 4n+1/2n+3. Tìm n thuộc số nguyên để:
a) A là 1 số nguyên của A
b) Tìm giá trị lớn nhất và nhỏ nhất của A
2) Tìm số nguyên dương n nhỏ nhất sao cho ta có cách thêm n chữ số sau số đó để số chia hết cho 39
3) Tìm giá trị lớn nhất của thương 1 số tự nhiên có 3 chữ số và tổng các chữ số của nó
4) Tìm giá trị nhỏ nhất của hiệu giữa 1 số tự nhiên có 2 chữ số và tổng ấc chữ số của nó
a)Tìm các số nguyên dương x, y thỏa mãn x+3 chia hết cho y, y+3 chia hết cho x
b)Tìm các số nguyên dương x, y thỏa mãn xy+x+y+2 chia hết cho cả x và y.
1.Cho dãy tỉ số bằng nhau: \(\frac{2016a++c+d}{c}\) =\(\frac{a+2016b+c+d}{b}\)=\(\frac{a+b+2016c+d}{c}\)=\(\frac{a+b+c+2016d}{d}\). Tính giá trị biểu thức M=\(\frac{a+b}{c+d}+\frac{b+c}{d+a}\)+\(\frac{c+d}{a+b}+\frac{d+a}{b+c}\)
2. a, Tìm tất cả các giá trị của x thỏa mãn :|x+2013|+\(\left(3y-7\right)^{2014}\le\) 0
b,Tìm tất cả các giá trị của x biết : \(7^{2x}+7^{2x+3}\)=344
c, Tìm 3 số x,y,z biết \(\frac{7}{2x+2}\)=\(\frac{3}{2y-4}\)=\(\frac{5}{x+4}\) và x+y+z=17
3.a, Cho tỉ lệ thức \(\frac{a+b+c}{a+b-c}=\frac{a-b+c}{a-b-c}\) .CMR: c=0 hoặc b=0
b,Cho x,y là các số nguyên tố dương sao cho A=\(\frac{x^4+y^4}{15}\) cũng là số nguyên dương . CMR ; x,y đều chia hết cho 3 và 5. Từ đó tìm ra giá trị nhỏ nhất của A
c, cho các số a,b,c đôi một khác nhau và khác 0, thỏa mãn \(\frac{a+b}{c}=\frac{b+c}{a}=\frac{c+a}{b}\) . hãy tìm giá trị biểu thức : P=\(\left(1+\frac{c}{b}\right)\left(1+\frac{b}{c}\right)\left(1+\frac{c}{a}\right)\)