\(=\left(x^3-y^3\right)-\left(x^2-2xy+y^2\right)\)
\(=\left(x-y\right)\left(x^2+xy+y^2\right)-\left(x-y\right)^2\left(1\right)\)
Xét : \(\left(x-y\right)^2=x^2+y^2-2xy\)
Thay \(\hept{\begin{cases}x-y=-7\\xy=-6\end{cases}\left(3\right)}\)vào , ta được :
\(x^2+y^2=49-12=37\left(2\right)\)
Thay \(\left(2\right)\),\(\left(3\right)\)vào \(\left(1\right)\)vào , ta có giá trị của biểu thức tương đương với :
\(-7\left(37-6\right)-\left(-7^2\right)=-7.31-49=-266\)