Đặt x = 1 + m ; y = 1 - m thì x + y = 1 + m + 1 - m = 2
Ta có xy = (1 + m) . (1 - m) = 1 . (1 - m) + m . (1 - m) = 1 - m + m - m2 = 1 - m2 \(\le\) 1 (vì m2 \(\ge\) 0).
Vậy suy ra điều phải chứng minh (dấu = xảy ra \(\Leftrightarrow\) m = 0 \(\Leftrightarrow\) x = y = 1)
X + y = 1 => ít nhất có1 số dương.
TH1 : 1 dương , 1 âm => xy < 0 < 1
TH2 : x > 0, y > 0
Ta có : x + y >= 2 nhân căn của (x.y)
Suy ra 2 >= 2 nhân căn của ( x.y )
Suy ra 1 >= căn của ( x.y ).
Vây x.y =< 1