Cho \(x>1\); \(y>1\) và \(x+y=6\). Tính GTNN của
\(S=3x+4y+\dfrac{5}{x-1}+\dfrac{9}{y-1}\)
tìm GTNN của A = \(\frac{4y^2-4x^2+6xy}{x^2+y^2}\)
với 0 <x<1 tìm GTNN của C =\(\frac{x}{1-x}+\frac{5}{x}\)
tìm GTLN của D = 3x^2 ( 5 - 3x^2 )
1.cho x,y thỏa mãn: x² + y² = 1. Chứng minh rằng: -5 ≤ 3x+4y ≤5
2. cho x,y thỏa mãn : x² +y² =6 . Tìm GTLN và GTNN của P=x-√(5y)
Dùng BDT Bunhia nhá các bạn
1. TÌm GTNN:
a, M=\(\frac{x^4+1}{\left(x^2+1\right)^2}\)
b, N=\(\frac{x^2}{-4y^2+20xy-29x^2}\)
2. Tìm GTNN và GTLN của biểu thức:
a,A=\(\frac{2x^2-2x+9}{x^2+2x+5}\)
b, B=\(\frac{4x^3}{x^2+1}\)
c, C=\(\frac{2\left(x^2+x+1\right)}{x^2+1}\)
d, D=\(\frac{x^2+xy+y^2}{x^2+y^2}\)với x khác 0
1. Cho x,y thỏa mãn 0 < x <= 2, 4 <= y < 5 và x + y = 6
Tìm GTNN: P = 1/x + 1/y
2. Cho x > 2y, xy = 1
Tìm GTNN: P = (x^2 + 4y^2)/(x-2y)
11. tìm x,y thuộc Z thỏa mãn
a, xy-3x+2y=7
b, xy-5x+4y=9
c, 2xy+3x+7y=11
d, \(\frac{1}{x}+\frac{1}{y}=\frac{1}{11}\)(x;y thuộc N*)
tìm gtnn của:
a) \(A=\frac{4}{x}+\frac{1}{4y}\) với x+ y = 1
b) B = x + y với \(\frac{2}{x}+\frac{3}{y}=6\)
cho các số dương x,y,z thỏa mãn x+y+z=1 .Tìm GTNN của biểu thức P=\(\frac{1}{16x}\)+\(\frac{1}{4y}\)+\(\frac{1}{z}\)
cho x,y>0 và x+y=1 . tìm GTNN, GTLN của A=\(\frac{x}{y+1}\)+\(\frac{y}{x+1}\)
cho x,y,z >0 và xyz=1 tìm GTNN của A=\(\frac{x^2}{1+y}\)+\(\frac{y^2}{1+z}\)+\(\frac{z^2}{1+x}\)