Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Karin Korano

Cho x > 0; y > 0
Tìm GTNN của A = \(\frac{x^4}{y^4}+\frac{y^4}{x^4}-\frac{x^2}{y^2}-\frac{y^2}{x^2}+\frac{x}{y}+\frac{y}{x}\)

Trần Thị Loan
2 tháng 6 2015 lúc 20:48

Đặt \(t=\frac{x}{y}+\frac{y}{x}\). Vì x; y > 0 => \(\frac{x}{y}>0;\frac{y}{x}>0\). Áp dung BDT Cô - si có:

\(t=\frac{x}{y}+\frac{y}{x}\ge2.\sqrt{\frac{x}{y}.\frac{y}{x}}=2\)

Có: \(\frac{x^2}{y^2}+\frac{y^2}{x^2}=\left(\frac{x}{y}+\frac{y}{x}\right)^2-2.\frac{x}{y}.\frac{y}{x}=t^2-2\)

\(\frac{x^4}{y^4}+\frac{y^4}{x^4}=\left(\frac{x^2}{y^2}+\frac{y^2}{x^2}\right)^2-2.\frac{x^2}{y^2}.\frac{y^2}{x^2}=\left(t^2-2\right)^2-2=t^4-4t^2+4-2=t^4-4t^2+2\)

Vậy \(A=t^4-4t^2+2-\left(t^2-2\right)+t=t^4-5t^2+t+4\)

=> \(A=\left(t^4-8t^2+16\right)+3t^2+t-12=\left(t^2-4\right)^2+3t^2+t-12=\left(t^2-4\right)^2+3\left(t^2-4\right)+t\ge2\)với mọi \(t\ge2\)

Vì \(t\ge2\) => \(t^2\ge4\Rightarrow t^2-4\ge0\)

Vậy Min A = 2 khi t = 2 <=> \(\frac{x}{y}+\frac{y}{x}=2\) <=> x = y = 1

 


Các câu hỏi tương tự
dekhisuki
Xem chi tiết
Mi Tạ Tiểu
Xem chi tiết
Hi nguyễn
Xem chi tiết
Guyn
Xem chi tiết
AE575DRTQ ỨAE65U5W
Xem chi tiết
Phúc Trần
Xem chi tiết
Thùy Hoàng
Xem chi tiết
Lưu Ngọc Thái Sơn
Xem chi tiết
trần xuân quyến
Xem chi tiết