Ta có OC là tia phân giác của góc AOB
\(\Rightarrow\widehat{AOC}=\widehat{COB}=\frac{\widehat{AOB}}{2}=\frac{140^o}{2}=70^o\)
\(\Rightarrow\widehat{AOC}+\widehat{COD}=180^o\)
\(\Rightarrow70^o+\widehat{COD}=180^o\Rightarrow\widehat{COD}=180^o-70^o=110^o\)
b) Ta có: \(\widehat{AOE}+\widehat{EOB}=\widehat{AOB}\)
\(\Rightarrow\frac{5}{7}\widehat{AOB}+\widehat{EOB}=\widehat{AOB}\Rightarrow\widehat{EOB}=\widehat{AOB}-\frac{5}{7}\widehat{AOB}\)
\(\Rightarrow\widehat{EOB}=\frac{2}{7}\widehat{AOB}\left(1\right)\)
\(\widehat{AOB}+\widehat{BOD}=180^o\)( kề bù )
\(\Rightarrow140^o+\widehat{BOD}=180^o\Rightarrow\widehat{BOD}=180^o-140^o=40^o\)
\(\frac{\widehat{BOD}}{\widehat{AOB}}=\frac{40^{ }}{140}=\frac{2}{7}\)
\(\Rightarrow\widehat{BOD}=\frac{2}{7}\widehat{AOB}\left(2\right)\)
Từ ( 1 ) và ( 2 ) suy ra \(\widehat{BOD}=\widehat{EOB}\)
Nên Ob là tia phân giác của \(\widehat{DOE}\)( đpcm )