Cho a, b, c là 3 số lẻ. CMR: ƯCLN(a; b) = ƯCLN(\(\frac{a+b}{2};\frac{b+c}{2};\frac{c+a}{2}\))
Cho a, b, c là 3 số lẻ. CMR: ƯCLN(a; b) = ƯCLN(\(\frac{a+b}{2};\frac{b+c}{2};\frac{c+a}{2}\))
1. Cho a;b;c lẻ
CM: ƯCLN (a;b;c)=ƯCLN (a+b/2;b+c/2;a+c/2)
2. Tìm ƯCLN (1995^4+3.1995^2+1;1995^3+2.1995)
3.CMR: n!+1 và (n+1)!+1 nguyên tố cùng nhau
CMR : ƯCLN(a, b) = ƯCLN(a, a+b)
ƯCLN(a, b) = ƯCLN(a, \(\frac{a+b}{2}\)) (a, b lẻ)
Cho a b, là số tự nhiên lẻ, b thuộc N . Chứng minh rằng ƯCLN(a ,ab+ 128) =1
Cho \(a,b,c\) là các số lẻ. Chứng minh rằng:
\(ƯCLN\left(a;b;c\right)=ƯCLN\left(\frac{a+b}{2};\frac{b+c}{2};\frac{c+a}{2}\right)\)
Điền đúng hoặc sai
a) Nếu a chia hết cho b thì ƯCLN (a;b) = a
b) Nếu a chia hết cho b thì ƯCLN (a;b;c) = ƯCLN (b';c)
c) Nếu a là số nguyên tố và b khác a thì ƯCLN (a;b;c) = ƯCLN ( a;b ) = 1
Giúp tui nha! Mai nộp bài rồi
Bài 1: Cho ƯCLN(a,b) =1( a,b€n). Chứng minh rằng:
A) ƯCLN(a+b, ab) = 1
B) ƯCLN(2a+b,a (a+b) = 1
C) Tìm ƯCLN (a+b, a-b)
Bài2: 1) Biết rằng 5n+6 và 8n+7 là 2 số nguyên tố cùng nhau. Tìm ƯCLN(13n+13; 3n+1)
CMR:
1.ƯCLN(a,b)=1 thì ƯCLN(a+b,a-b)=1 hoặc 2
2.a,b,c là số lẻ thì ƯCLN(a,b,c)= ƯCLN(a+b/2;b+c/2;c+a/2)
3.Cho ƯCLN(a,b)=1.Tìm ƯCLN (11a+2b;18a+5b)