Giả sử OO là điểm nằm trong tứ giác ABCD sao cho SOBAD=SOBCD ⇒SOBD=SIBD ⇒OI//BD |
Giả sử OO là điểm nằm trong tứ giác ABCD sao cho SOBAD=SOBCD ⇒SOBD=SIBD ⇒OI//BD |
Cho tứ giác lồi ABCD. Tìm tập hợp điểm O nằm trong tứ giác OBCD và OBAD có diện tích bằng nhau
Cho tứ giác ABCD
a) tìm tập hợp điểm M sao cho S ABCM= S ADCM
b)tìm trong tứ giasc 1 đỉnh O sao cho OA,OB,OC<OD chia tứ giác thành 4 phần có diện tích bằng nhau
cho tứ giac ABCD , điểm O thuôc tứ giác ABCD sao cho diện tích tam giác AOD = diện tích tam giác DOA= diện tích tam giác COB chứng minh O thuôc 1 trong 2 đường chéo AC và DB
Bài 1: Cho tam giác ABC cân tại A có BC = 4cm. Hai điểm D và E lần lượt nằm trên cạnh AC và AB sao cho AD = 2DC, AE=2EB và BD,Ce vuông góc với nhau. Tính diện tích tam giác ABC.
Bài 2: Cho tứ giác ABCD. Qua trung điểm M của đường chéo BD dựng đường thẳng // AC cắt AD tại E. Chứng minh CE chia tứ giác ABCD thành 2 phần có diện tích bằng nhau.
CHO TỨ GIÁC LỒI ABCD
A) CM NẾU MỖI ĐƯỜNG CHÉO PHÂN TỨ GIÁC THÀNH 2 TAM GIÁC CÓ DIỆN TÍCH BẰNG NHAU THÌ ABCD LÀ HÌNH BÌNH HÀNH
B) CM NẾU O LÀ 1 ĐIỂM TRONG TỨ GIÁC SAO CHO SABO=SBCO=SCDO=SDAO THÌ O THUỘC AC HAY O THUỘC BD
Cho tứ giác lồi ABCD
a/ C/m nếu mỗi đường chéo phân tứ giác thành 2 tam giác có diện tích bằng nhau thì ABCD là hình bình hành .
b/ C/m nếu O là 1 điểm trong tứ giác sao cho SABO=SBCO=SCDO=SDAO thì O thuộc AC hay O thuộc BD
Cho tứ giác ABCD lấy E, F thuộc AB sao cho AE=EF=FB và lấy G, H thuộc CD sao cho CG=GH=HD. Chứng minh diện tích tứ giác EFGH bằng một phần ba diện tích tứ giác ABCD.
Cho tứ giác lồi ABCD. Qua trung điểm của đường chéo BD dựng đường thẳng song song với đường chéo AC , đường thẳng này cắt đoạn thẳng AD tại E. Chứng minh rằng CE chia tứ giác thành 2 phần có diện tích bằng nhau.
toán 8 đó mọi người, giải hộ
cho Tứ giác ABCD có diện tích S và diểm O nẳm trong tứ giác sao cho OA^2+OB^2+OC^2+OD^2=2S.chứng minh ABCD là hinh vuông có tâm là điểm O