xét trường hợp tứ giác lồi ABCD không phải là hình thang
nối BD , gọi I là trung điểm của BD
xét tam giác ABD ta được
M là trung điểm AB (GT)
I là trung điểm của BD ( như cách gọi)
=> MI là đường trung bình của tam giác ABD
=> MI // AD ; MI = 1/2 AD (1)
xét tam giác DBC ta có
I là trung điểm của BD ( như cách gọi)
N là trung điểm của CD ( GT)
=> NI là đường trung bình của tam giác DBC
=> NI //BC ; NI = 1/2BC (2)
cộng theo vế của (1) và (2) ta được
NI + MI = 1/2 (AD + BC) hay \(MI+NI=\frac{BC+AD}{2}\)(3)
vì ABCD không phải là hình thang nên I không thuộc MN hay 3 điểm I,M,N không thẳng hàng. Ta được tam giác MIN.
áp dụng định lí bất đẳng thức tm giác vào tm giác MIN ta có
MN < MI + NI (4)
kết hợp (3) và (4) ta được
\(MN<\frac{BC+AD}{2}\)(5)
* Xét trường hợp ABCD là hình thang ( AD // BC)
ta có
M là trung điểm AB,
N là trung điểm CD
=> MN là đường trung bình của hình thang ABCD
=> \(MN=\frac{BC+AD}{2}\) (6)
kết hợp (5) và (6) ta được
\(MN\le\frac{BC+AD}{2}\)