Cho tứ giác lồi ABCD có Aˆ+Bˆ=180∘, AB<AD, AC là tia phân giác của BADˆBAD^. Kẻ H, K lần lượt là chân đường vuông góc của C xuống đường thẳng AB, AD. CMR: BC=DC. GIÚP MK ĐI, MK ĐANG CẦN GẤP.
Cho tứ giác lồi ABCD có \(_{\widehat{A}+\widehat{B}=180^o}\), AB<AD, AC là tia phân giác của \(\widehat{BAD}\). Kẻ H, K lần lượt là chân đường vuông góc của C xuống đường thẳng AB, AD. CMR: BC=DC
Bài 1 : Cho tứ giác lồi ABCD có góc A + góc C = 180 độ, AB<AD, AC là tia phân giác của góc BAD . Chứng minh rằng BC = DC
Bài 2 : Cho tứ giác lồi ABCD có góc B + góc D = 180 độ. Hai đường thẳng AD và BC cắt nhau tại E, hai đường thẳng AB và DC cắt nhau tại F. Vẽ 2 tia phân giác của 2 góc BFC và CED, chúng cắt nhau tại M. Chứng minh rằng EMF = 90 độ
Bai 1 : Cho hình bình hành ABCD ; góc BAD = 120 độ ; AB = 2 AD
a) CMR: Tia phân giác của góc ADC đi qua trung điểm E của AB .
b) Gọi F là trung điểm DC . CMR tam giác ADF đều và AD vuông góc với AC
Bài 2: Cho hình bình hành ABCD có BC = 2AB . Gọi M là trung điểm AD. Kẻ CE vuông góc với AB ; E nằm giữa A và B . CMR: góc EMD = 3 góc AEM
Bìa 3: Cho tam giác ABC vuông tại A . Đường cao AH . Từ H kẻ HE , HF vuông góc với AB và AC . Kẻ AI vuông góc với EF ( I \(\in\)BC). CMR: a) I là trung điểm BC
b) Cho tam giác ABC vuông tại A. Đường cao AH. Gọi E, F lần lượt là các hình chiếu của H xuống AB, AC. Gọi I là trung điểm của BC. CMR: AI vuông góc với EF.
Bài 4: Cho tam giác ABC cân tại A . D bất kì thuộc BC . Qua D kẻ đường thẳng vuông góc với BC cắt AB và AC lần lượt tại E,F . Gọi I,K lần lượt là trung điểm của BE và CF .
a) CMR: AKDI là hình bình hành
b) Nêu thêm điều kiện của tam giác ABC và của điểm D để DIAK là hình vuông
Bài 1: Cho hình thang ABCD (AB//CD) trong đó đáy CD bằng tổng hai cạnh bên BC và AD.Hai đường phân giác của hai góc A,B cắt nhau tại K.Chứng minh C,D,K thẳng hàng.
Bài 2: Cho tam giác ABC trong đó AB<AC.Gọi H là chân đường cao kẻ từ đỉnh A. M,N,P lần lượt là trung điểm các cạnh AB,AC,BC. C/m tứ giác NMPH là hình thang cân.
Bài 3: Cho tứ giác ABCD có AD=BC. M,N lần lượt là trung điểm của AB,DC.Đường thẳng AD cắt đường thẳng MN tại E.Đường thẳng BC cắt MN tại F.C/m góc AEM=BFM
CÁC BẠN GIÚP MÌNH VỚI
bài 1: cho hình thang abcd có ab // cd , ab=bc .
a,CM : ca là tia phân giác của góc bcd
b,gọi m,n,e,f lần lượt là trung điểm của ad,bc,ca,bd. CM m,n,e,f thẳng hàng
bài 2 cho tứ giác abcd có ac vuông góc với bd gọi m,n,l lần lượt là trung điểm của ab,ad,ac . từ m kẻ đường thẳng vuông góc với cd cắt ac tại h .
CM : h là t.tâm tam giác mnl
Bài 1: Tứ giác ABCD có AB=BC=CD và Góc D+B=180 độ
a, Chứng minh AC là phân giác góc A
b, Tứ giác ABCD là hình gì? tại sao?
Bài 2: Cho hình thang ABCD (AB//CD). M là trung điểm của AD sao cho CM là phân giác góc C. Biết MB=6cm, MC=8cm
a, BC=?
b, So sánh khoảng cách từ M đến BC và đường cao hình thang.
Bài 3: Cho tứ giác ABCD, AC là phân giác góc A. Gọi I,K lần lượt là trung điểm của AD,BC. IK cắt AC tại S.
a, Cmr: S là trung điểm của AC
b, Từ C kẻ Cx//AD. Cx cắt AB tại M. Tứ giác ABCD là hình gì? tại sao?
Bài 4: Cho tứ giác ABCD gọi E,F lần lượt là trung điểm của BC và AD.
Cmr:
a,EF<(AB+CD)/2
b, Tứ giác ABCD<=>EF<(AB+CD)/2
Bài 5: Cho hình thang ABCD (AB//CD), AB<CD. AC cắt BD tại O. Biết gócDOC=60 độ
AD=6cm. P,Q,R lần lượt là trung điểm của OA,OD. Tính chu vi tam giác PQR
Bài 6: Cho tam giác ABC, D thuộc AB sao cho BD=1/4 AB, E là trung điểm vủa BC. Đường thẳng DE cắt AC tại F. Cmr: CF=1/2AC.
Các bạn xem làm giúp mình với nhé mình sắp phải nộp rồi
Cho tam giác ABC nhọn (AB < AC) có đường trung tuyến AM và phân giác trong AD. Qua điểm D kẻ đường thẳng vuông góc với AD, đường thẳng này cắt AB và AM lần lượt tại P và Q. Từ P kẻ 1 đường thẳng vuông góc với AB cắt tia AD ở điểm K.
CMR: KQ vuông góc với BC ?
cho tứ giác ABCD có 2 đường chéo AC,BD vuông góc với nhau. gọi M,N,L lần lượt là trung điểm của AB,AD và đường chéo AC. Từ M kẻ đường thẳng vuông góc với CD cắt AC tại H.
CMR H là trực tâm của tam giác MNL