Cho tứ giác ABCD, trong đó góc ABC=góc ADC và góc ABC+góc BCD<180o. Gọi E là giao điểm của 2 đường thẳng AB,CD. Chứng minh rằng AB2=CD*CE-AB*AE
Cho tứ giác ABCD, trong đó góc ABC=góc ADC và góc ABC+góc BCD<180o. Gọi E là giao điểm của 2 đường thẳng AB,CD. Chứng minh rằng AC2=CD*CE-AB*AE
Cho tứ giác ABCD, trong đó \(\widehat{ABC}=\widehat{ADC}\) và \(\widehat{ABC}+\widehat{BCD}\) <180o. Gọi E là giao điểm của 2 đường thẳng AB,CD. Chứng minh rằng AB2=CD*CE-AB*AE
Ai trả lời đúng và nhanh nhất thì mình t.i.c.k!
Bài 1: Cho tam giác ABC .Trên tia AC lấy điểm M sao cho AM = AB. Trên tia AB lấy điểm N sao cho AN = AC. Chứng minh tứ giác BMCN là hình thang
Bài 2: Cho tam giác ABC vuông tại A. Lấy điểm M thuộc cạnh BC sao cho AM= 1/2 BC, N là trung điểm cạnh AB. Chứng minh:
a) Tam giác ABC cân ---- b) Tứ giác MNAC là hình thang vuông
Bài 3: Cho hình thang cân ABCD ( AB // CD ) ---- a) Chứng minh góc ACD = góc BCD ---- b) Gọi E là giao điểm của AC và BD. C/minh EA = EB
Bài 4: Cho ABCD là hình thang ( AB // CD, AB < CD ). Kẻ các đường cao AE,BF của hình thang. C/minh rằng DE = CF
Bài 5: Cho ABCD là hình thang ( AB // CD ) có DB là đường phân giác góc D và AE là đường phân giác góc A ( E thuộc DC ). Biết AE // BC và O là giao điểm của AE với DB. CMR:
a) AE vuông góc với DB
b) AD // BE và AD = BE
c) E là trung điểm của DC
d) Xác định dạng của tứ giác BCEO
e) Biết góc BEC = 80 độ. Hãy tính các góc của hình thang ABCD
Cho tứ giác ABCD có ADC+BCD=90° và AD=BC . Gọi M, N, P, Q lần lượt là trung điểm của AB, AC, CD, BD. a) Chúng minh rằng tứ giác MNPQ là hình bình hành. b) đường thẳng PM cắt BC tại E. tính góc PEC. c) chứng minh diện tích MNPQ≥ (AB-CD)²/8. đẳng thức xảy ra khi nào?
PLEASE!❤️🙏
cho tứ giác abcd, e là giao điểm của các đường thẳng ab và cd, f là giao điểm của các đường thẳng bc và ad. Các tia phân giác của góc e và góc f cắt nhau tại i. Chứng minh góc eif=\(\frac{1}{2}\)(góc bad+góc bcd)
Cho tứ giác ABCD có E là giao điểm của hai đường thẳng AB và CD; F là giao điểm của hai đường thẳng BC và AD. Các tia phân giác của góc E và F cắt nhau tại F. Chứng minh rằng:
a) Nếu góc BAD= 130 độ; góc BCD= 50 độ thì IE vuông góc với IF
b) Góc EIF bằng nửa tổng của 1 trong 2 cặp góc đối của tứ giác ABCD
1. Cho tứ giác ABCD ( AD không song song BC) có E,F lần lượt là trung điểm AD, BC và EF=AB+CD/2. Chứng minh rằng tứ giác ABCD là hình thang.
2. Cho tứ giác ABCD có AD=BC. Đường thẳng đi qua trung điểm M và N của 2 cạnh AB và CD cắt AD và BC lần lượt tại E và F. Chứng minh góc AEM=góc MFB.
3. Cho tam giác ABC (AB>AC). Trên cạnh AB lấy điểm D sao cho BD=AC. Gọi M,N lần lượt là trung điểm của AD, BC. Chứng minh góc BAC = 2.BMN
4. Cho tứ giác ABCD, gọi A', B', C', D' lần lượt là trọng tâm của các tam giác BCD, ACD, ABD, ABC. Chứng minh rằng các đường thẳng AA', BB', CC', DD' đồng quy.
5. Cho tam giác ABC, G là trọng tâm. Đường thẳng d không cắt các cạnh của tam giác ABC. Gọi A', B', C', G' lần lượt là hình chiếu của A, B, C, G trên đường thẳng d. Chứng minh GG'=AA'+BB'+CC'/3
1) Cho tứ giác lồi ABCD có góc B + D= 180°, CB= CD. Chứng minh AC là tia phân giác góc BAD
2) Tứ giác ABCD có AC là tia phân giác góc A, BC= CD, AB<AD
a) Lấy điểm E trên cạnh AD sao cho AE= AB. Chứng minh rằng góc ABC= AEC
b) Chứng minh góc B+ D= 180°