Cho tứ giác ABCD và đường tròn tâm O ,S là điểm chính giữa của cung AB ,SC,SD cắt AB ở A va E
a: c/m tứ giác CDES nội tiếp
b: DE và CS kéo dài cắt đường tròn tâm O ở M và N . C/M SO vuông góc với MN
Các bạn giúp mình nha!
BÀI 1 cho tam giác ABC vuông tại A .Nữa đường tròn đường kính AB cắt BC tại D.Trên cung AD lấy một điểm E .Nối BE và kéo dài AC tại F.Chứng minh tứ giác CDEF nội tiếp
BÀI 2: Cho đường tròn tâm O đường kính AB cố định ,CD là đường kính thay đổi của đường tròn (O) ( khác AB ) .Tiếp tuyến tại B của (O ) cắt AC và AD lần lượt tại N và M .Chứng minh tứ giác CDMN nội tiếp
BÀI 3 :Cho hai đoạn thẳng MN và PQ cắt nhau tại O .Biết OM.ON= PO.OQ.Chứng minh tứ giác MNPQ nội tiếp
BÀI 4: Cho tam giác ABC có đường cao AH . Gọi M, N lần lượt là hình chiếu vuông góc của H lên các cạnh AB, AC
a) c/m AMHN nội tiếp
b) BMNC nội tiếp
BÀI 5: Cho tam giác ABC các đường phân giác trong là BE và CF cắt nhau tại M và các đường phân giác ngoài của các góc B và góc C cắt nhau tại N .chứng minh BMCN nội tiếp
BÀI 6: Cho đường tròn (O) đường kính AB .Gọi M là một điểm trên tiếp tuyến xBy , đường thẳng AM cắt đường tròn (O) tại C , lấy D thuộc BM, nối AD cắt (O) tại I. c/m CIDM nội tiếp
BÀI 7: Cho đường tròn tâm (O) có cung EH và S là điểm chính giữa cung đó .Trên dây EH lấy hai điểm A và B .Các đường thẳng SA và SB cắt đường tròn lần lượt tại D và C .c/m ABCD là tứ giác nội tiếp
BÀI 8: Cho đường tròn (O) đường kính AB , từ A và B vẽ Ax vuông góc AB và By vuông góc BA (Ax và By cùng phía so với bờ AB ) .Vẽ tiếp tuyến x'My' (tiếp điểm M) cắt Ax tại C và By tại D ; OC cắt AM tại I và OD cắt BM tại K .Chứng minh CIKD nội tiếp
ĐỀ: Cho tứ giác ABCD nội tiếp trong dtron tâm O và I là điểm chính giữa cung AB (cung AB ko chứa C và D ). Dây ID;IC cắt AB tại M và N
a, CMR: tứ giác DMNC nội tiếp trong dtron
b, IC và AD cắt nhau tại E; ID và BC cắt nhau tại F . CMR: EF//AB
giúp mình câu B
Cho tứ giác ABCD nội tiếp trên đường tròn tâm O, S là điểm chính giữa cungAB, SC, SD cách AB ở E và F a) cm: tứ giác CDFE nội tiếp. b)cm: SO là tia phân giác của góc ASD
Cho đường tròn (O) đường kính AB cố định, điểm H nằm giữa hai điểm A và O. Kẻ dây CD vuông góc với AB tại H. Lấy điểm F thuộc cung AC nhỏ, BF cắt CD tại E, AF cắt DC tại I.
a) CMR: tứ giác AHEF là tứ giác nội tiếp.
b) CMR: góc BFH = góc EAB, từ đó ⇒ BE.BF=BH.BA.
c) Đường tròn ngoại tiếp ΔIEF cắt AE tại điểm thứ hai M. CMR: ΔHIA ~ ΔHBE và điểm M thuộc (O)
d) Tìm vị trí của H trên OA để ΔOHD có chu vi lớn nhất
Cho tam giác ABC vuông tại A. Đường tròn đường kính AB cắt BC tại D. Trên cung AD lấy điểm E. Nối BE và kéo dài cắt AC tại F. a) chứng minh tứ giác CDEF nội tiếp đường tròn b) kéo dài DE cắt AC tại K. Tia phân giác của góc CKD cắt EF và CD tại M và N. Tia phân giác của góc CBF cắt DE và CF tại P và Q. Chứng minh tứ giác MPNQ là hình thoi (các bạn giúp mình làm câu b với)
1/ Từ một điểm M ở ngoài đường tròn (O) kẻ hai tiếp tuyến MA, MB( A,B là tiếp điểm)
a/ CMR tứ giác MAOB nội tiếp định tâm I và bán kính của đường tròn này
b/ Cho MO = 2R CMR tam giác MAB đều
2/ Cho đường tròn (O) đường kính AB gọi I là trung điểm của OA. Qua I vẽ dây CD vuông góc AB. K la trung điểm của BC. CMR tứ giác CIOK nội tiếp đường tròn
3/ Cho nửa đường tròn (O) đường kính AB. Từ A và B kẻ hai tiếp tuyến Ax, By. Qua điểm M thuộc nửa đường tròn kẻ tiếp tuyến thứ ba cắt Ax và By lần lượt tại E và F. CMR tứ giác AEMO là tứ giác nội tiếp
4/ Cho tam giác ABC cân tại A có góc A nhọn, đường vuông góc với AB tại A cắt đường thẳng B, C tại E. Kẻ EN vuông với EC gọi M là trung điểm BC. CMR tứ giác AMNE là tứ giác nội tiếp đường tròn
Giải giúp mk vs mk đang cần gấp
1, Cho tam giác ABC nội tiếp (O) đường kính AD. Qua D kẻ tiếp tuyến với đường tròn cắt BC kéo dài tại P. Đường thẳng PO cắt AB, AC ở N, M. Chứng minh rằng OM = ON.
2, Cho tam giác ABC trực tâm H. Gọi A',B',C' là trung điểm của BC, CA, AB. Vẽ 3 đường tròn bằng nhau có tâm A, B, C. (A) cắt B'C' tại D và D'; (B) cắt A'C' tại E và E'. (C) cắt A'B' ở K và K'. CMR: 6 điểm D,D',E,E',K,K' thuộc 1 đường tròn.
3, Cho tam giác ABC nội tiếp (O). Phân giác góc A cắt (O) tại M, vẽ đường kính MN. Phân giác góc B, góc C cắt AN tại P, Q. CMR tứ giác PCBQ nội tiếp
Cho tam giác nhọn ABC (AB<AC) đường tròn đường kính BC cắt AB và AC tại F và E. BE cắt CF tại H EF cắt BC tại S AH cắt EF và BC tại tại I và D
a) CMR: SE.FI=SF.IE
b) Đường vuông góc với AO tại A cắt CF và BE tại M và N. CMR: A là trung điểm của MN
c) CM tứ giác FDOE nội tiếp