Ben 10 làm sai rồi hình như lạc đề luôn đè bài là hình tứ giác sao xuống làm tam giác
Ben 10 làm sai rồi hình như lạc đề luôn đè bài là hình tứ giác sao xuống làm tam giác
Cho tứ giác ABCD. Gọi M, N lần lượt là trung điểm của AD và BC. Gọi I là trung điểm của MN; AI cắt DN tại G. Chứng minh G là trọng tâm của tam giác ABC
Bài 1: Cho tam giác ABC nhọn(AB<AC), đường cao AH. Gọi M, N, P lần lượt là trung điểmBC, AC, AB . CMR: HMNP là hình thang cân
Bài 2: Cho tứ giác ABCD gọi M, N lần lượt là trung điểm AD và BC. Gọi I là trung điểm của MN, AI cắt DN tại G. Chứn minh: G là trọng tâm tam giác BCD
Cho tứ giác ABCD. Gọi M, N là trung điểm của AD, BC. Gọi I là trung điểm của MN; G là giao điểm AI và DN. Chứng minh: G là trọng tâm tam giác BCD.
Giúp giùm nhanh nhanh nhé! Đang cần gấp! Hi hi!
Cho tứ giác ABCD. Gọi M, N theo thứ tự là trung điểm của AD, BC và I là trung điểm của MN. Gọi G là trọng tâm của tam giác BCD. Chứng minh A, I, G thẳng hàng.
Cho tứ giác ABCD. Gọi M, N theo thứ tự là trung điểm của AD, BC và I là trung điểm của MN. Gọi G là trọng tâm của tam giác BCD. Chứng minh A, I, G thẳng hàng.
1. Cho tứ giác ABCD ( AD không song song BC) có E,F lần lượt là trung điểm AD, BC và EF=AB+CD/2. Chứng minh rằng tứ giác ABCD là hình thang.
2. Cho tứ giác ABCD có AD=BC. Đường thẳng đi qua trung điểm M và N của 2 cạnh AB và CD cắt AD và BC lần lượt tại E và F. Chứng minh góc AEM=góc MFB.
3. Cho tam giác ABC (AB>AC). Trên cạnh AB lấy điểm D sao cho BD=AC. Gọi M,N lần lượt là trung điểm của AD, BC. Chứng minh góc BAC = 2.BMN
4. Cho tứ giác ABCD, gọi A', B', C', D' lần lượt là trọng tâm của các tam giác BCD, ACD, ABD, ABC. Chứng minh rằng các đường thẳng AA', BB', CC', DD' đồng quy.
5. Cho tam giác ABC, G là trọng tâm. Đường thẳng d không cắt các cạnh của tam giác ABC. Gọi A', B', C', G' lần lượt là hình chiếu của A, B, C, G trên đường thẳng d. Chứng minh GG'=AA'+BB'+CC'/3
Bài 4. Cho tam giác ABC với trực tâm H, trọng tâm G, tâm đường tròn ngoại tiếp O. Gọi M, N lần lượt là trung điểm của BC, AC. Chứng minh rằng tam giác MON đồng dạng AHB. Từ đó chứng minh H, G, O thẳng hàng.
Bài 5. Cho tam giác ABC. Dựng ra ngoài các tam giác ABF và ACE lần lượt vuông tại B, C và đồng dạng với nhau. BE giao CF tại K. Chứng minh rằng AK ⊥ BC.
Bài 6. Cho tứ giác ABCD có hai đường chéo cắt nhau tại I thỏa mãn tam giác AID đòng dạng tam giác BIC. Kẻ IH ⊥ AD, IK ⊥ BC. M, N lần lượt là trung điểm AB, CD. Chứng minh rằng MN ⊥ HK.
Bài 7. Cho tứ giác ABCD có hai đường chéo cắt nhau tại O. Gọi M, N lần lượt là trung điểm AB, CD; H, K lần lượt là trực tâm các tam giác AOD, BOC. Chứng minh rằng MN ⊥ HK.
Bài 8. Cho tam giác ABC. Các đường cao AD, BE, CF . M thuộc tia DF , N thuộc tia DE sao cho ∠M AN = ∠BAC. Chứng minh rằng A là tâm đường tròn bàng tiếp góc D của tam giác DMN .
Bài 9. Cho tứ giác ABCD có hai đường chéo AC = BD. Về phía ngoài tứ giác dựng các tam giác cân đồng dạng AMB và CND (cân tại M, N ). Gọi P, Q lần lượt là trung điểm của AD, BC. Chứng minh rằng M N vuông góc với PQ.
Bài 10. Cho tam giác ABC. Các đường cao AD, BE, CF . Trên AB, AC lấy các điểm K, L sao cho ∠FDK = ∠EDL = 90◦. Gọi M là trung điểm KL. Chứng minh rằng AM ⊥ EF .
Mong các bạn giúp đỡ mình. Giúp được bài nào thì giúp nhé.
Cho tứ giác ABCD. Gọi M,N theo thứ tự lần lượt là trung điểm của AD,BC. Gọi I là trung điểm của M,N, gọi Glà giao điểm của AI vad DN.
CMR: Glà trọng tâm của Tam giác BCD
Giups mình với ai đúng mình cho một like
cho tứ giác ABCD có M,N,P,Q lần lượt là trung điểm của AB ,BC,CD,DA Gọi O là giao điểm của MP,NQ Gọi G là trọng tâm cảu tam giác BCD chứng minh A,O,G thẳng hàng