Cho tứ giác ABCD. Dựng ra ngoài tứ giác các tam giác ABM, BCN, CDP, DAQ lần lượt vuông cân tại M,N,P,Q. Chứng minh rằng
MP\(\perp\)NQ và MP=NQ
Cho tứ giác lồi ABCD có hai đường chéo AC=BD .Gọi M,N,P,Q là trung điẻm của AB, BC,CD,AD.
A, chứng minh \(MP\perp NQ\)
B,dựng các tam giác vuông cân ADE,BCF
CMR: \(MN\perp EF\)
C,Dựng ngoài các tam giác cân ABX,BCY,CDZ,DAT
CMR:\(XZ\perp YT\)
Cho tam giác ABC. Dựng ra phía ngoài tam giác các hình vuông ABCD và ACEF. Gọi Q, N
lần lượt là giao điểm các đường chéo của ABCD và ACEF; M, P lần lượt là trung điểm BC
và DF. Chứng minh rằng tứ giác MNPQ là hình vuông.
Cho tứ giác ABCD có AB=AD. Gọi MNPQ lần lượt là trung điểm AB, BC, CD, AD.
a) Chứng minh tứ giác QMBD là hình thang cân
b) Gọi I, K lần lượt là trung điểm AC, BD. Chứng minh tứ giác KMIP là hình bình hành và MP, NQ, IK đồng quy
c) Chứng minh MP + NQ < \(\frac{1}{2}\)PABCD (chu vi)
(Câu a mình biết làm rồi)
Cho tứ giác ABCD gọi M, N, P, Q, R, S lần lượt là trung điểm của AB, BC, CD, DA, AC, BD
a) Chứng minh rằng: Tứ giác MRPS và RQSN là hình bình hành
b) Chứng minh rằng: các đường thẳng MP, NQ, RS đồng quy
Cho tứ giác ABCD. Gọi M, N, P, Q lần lượt là trung điểm của các cạnh AB, BC, CD, DA và I, K là trung điểm các đường chéo AC, BD. Chứng minh:
a) Các tứ giác MNPQ, INKQ là hình bình hành.
b) Các đường thẳng MP, NQ, IK đồng quy.
Bài 4. Cho tam giác ABC với trực tâm H, trọng tâm G, tâm đường tròn ngoại tiếp O. Gọi M, N lần lượt là trung điểm của BC, AC. Chứng minh rằng tam giác MON đồng dạng AHB. Từ đó chứng minh H, G, O thẳng hàng.
Bài 5. Cho tam giác ABC. Dựng ra ngoài các tam giác ABF và ACE lần lượt vuông tại B, C và đồng dạng với nhau. BE giao CF tại K. Chứng minh rằng AK ⊥ BC.
Bài 6. Cho tứ giác ABCD có hai đường chéo cắt nhau tại I thỏa mãn tam giác AID đòng dạng tam giác BIC. Kẻ IH ⊥ AD, IK ⊥ BC. M, N lần lượt là trung điểm AB, CD. Chứng minh rằng MN ⊥ HK.
Bài 7. Cho tứ giác ABCD có hai đường chéo cắt nhau tại O. Gọi M, N lần lượt là trung điểm AB, CD; H, K lần lượt là trực tâm các tam giác AOD, BOC. Chứng minh rằng MN ⊥ HK.
Bài 8. Cho tam giác ABC. Các đường cao AD, BE, CF . M thuộc tia DF , N thuộc tia DE sao cho ∠M AN = ∠BAC. Chứng minh rằng A là tâm đường tròn bàng tiếp góc D của tam giác DMN .
Bài 9. Cho tứ giác ABCD có hai đường chéo AC = BD. Về phía ngoài tứ giác dựng các tam giác cân đồng dạng AMB và CND (cân tại M, N ). Gọi P, Q lần lượt là trung điểm của AD, BC. Chứng minh rằng M N vuông góc với PQ.
Bài 10. Cho tam giác ABC. Các đường cao AD, BE, CF . Trên AB, AC lấy các điểm K, L sao cho ∠FDK = ∠EDL = 90◦. Gọi M là trung điểm KL. Chứng minh rằng AM ⊥ EF .
Mong các bạn giúp đỡ mình. Giúp được bài nào thì giúp nhé.
cho tứ giác abcd. gọi m, n, p, q lần lượt là trung điểm của các cạnh ab, bc, cd, da và i, k là trung điểm các đường chéo ac, bd. chứng minh rằng:
a) tứ giác mnpq, inkq là hình bình hành.
b) gọi o là giao điểm của mp, nq. chứng minh 3 điểm i, o, k thẳng hàng
các bạn giúp mình với ạ, mình cảm ơn rất nhiều!
)
Cho tứ giác ABCD có BC = AD và BC không song song với AD, gọi M, N, P, Q, E, F lần lượt là trung điểm của các đoạn thẳng AB, BC, CD, DA, AC, BD. a/ (1,25đ) Chứng minh tứ giác MEPF là hình thoi . b/ (1,25đ)Chứng minh các đoạn thẳng MP, NQ, EF cùng cắt nhau tại một điểm . c/ (0,5đ) Tìm thêm điều kiện của tứ giác ABCD để N, E, F, Q thẳng hàng .