Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Đoàn Phương Liên

Cho tứ giác ABCD có \(\widehat{B}+\widehat{D}\)= 180 độ. E là giao điểm của AD và BC. F là giao điểm của AB và CD. Cho điểm P sao cho EP và FP lần lượt là phân giác \(\widehat{E},\widehat{F}\)CMR. \(\widehat{EPF}\)= 90 độ.

Mọi người giúp em gấp với ạ. Em xin cảm ơn. ^-^

 

Ciel Phantomhive
3 tháng 7 2019 lúc 10:55

Ta có: AB=BC (gt)

Suy ra: Tam giác ABC cân.

Nên    (1)

Lại có \(\widehat{A-1}=\widehat{A-2}\) (2) ( Vì AC là tia phân giác của ^AA^)

Từ (1) và (2) suy ra\(\widehat{C-1}|=\widehat{A-2}\) nên BC// AD (do\(\widehat{C-2}\(ở vị trí so le trong)

~~~~ học tốt~~~~

Nguyễn Linh Chi
3 tháng 7 2019 lúc 13:29

D C F A B E P 1 2 1 2 1 2 3

Xét tứ giác PEBF có: \(\widehat{P}+\widehat{E_2}+\widehat{B}_2+\widehat{B_3}+\widehat{B_1}+\widehat{F_2}=360^o\)(1)

Tương tự với tứ giác DEBF: \(\widehat{D}+\widehat{E}+\widehat{B}_2+\widehat{B_3}+\widehat{B_1}+\widehat{F}=360^o\)(2)

Vì \(\widehat{B_2}+\widehat{D}=180^o\)=> \(\widehat{B_1}=\widehat{B_3}=\widehat{D}\)

(1) => \(\widehat{P}+2.\widehat{D}+\widehat{B_2}+\widehat{E_2}+\widehat{F_2}=360^o\Rightarrow\widehat{E_2}+\widehat{F_2}=360^o-\left(\widehat{P}+2.\widehat{D}+\widehat{B_2}\right)\)

(2) => \(3.\widehat{D}+\widehat{B_2}+\widehat{E}+\widehat{F}=360^o\Rightarrow3.\widehat{D}+\widehat{B_2}+2\left(\widehat{E_2}+\widehat{F_2}\right)=360^o\)

=> \(3.\widehat{D}+\widehat{B_2}+2\left(360^o-\left(\widehat{P}+2.\widehat{D}+\widehat{B_2}\right)\right)=360^o\)

=> \(2.\widehat{P}=360^o-\left(\widehat{D}+B_2\right)=360^o-180^o=180^o\)

=> \(\widehat{EPF}=\widehat{P}=90^o\)


Các câu hỏi tương tự
Đoàn Phương Liên
Xem chi tiết
LỢI
Xem chi tiết
hoaan
Xem chi tiết
cần giải
Xem chi tiết
Anh Triệu Quốc
Xem chi tiết
huongkarry
Xem chi tiết
Cù Hương Ly
Xem chi tiết
gh
Xem chi tiết
Trần Cao Vỹ Lượng
Xem chi tiết