Do ABCD là tứ giác nên \(\widehat{A}+\widehat{B}+\widehat{C}+\widehat{D}=360^0\)
Ta có : \(A:B:C:D=1:2:3:4\)
<=> \(\frac{\widehat{A}}{1}=\frac{\widehat{B}}{2}=\frac{\widehat{C}}{3}=\frac{\widehat{D}}{4}=\frac{\widehat{A}+\widehat{B}+\widehat{C}+\widehat{D}}{1+2+3+4}=\frac{360}{10}=36^0\)\
Suy ra \(\hept{\begin{cases}\widehat{A}=36^0\\\widehat{D}=36^0.4=144^0\end{cases}}\Rightarrow\widehat{A}+\widehat{D}=36^0+144^0=180^0\)
Do góc A và góc D là hai góc trong cùng phía và bù nhau
=> AB // CD