Cho hình chóp S.ABCD có SA vuông góc với đáy, ABCD là hình vuông cạnh a 2 ; SA=2a. Gọi M là trung điểm của cạnh SC, α là mặt phẳng đi qua A, M và song song với đường thẳng BD. Tính diện tích thiết diện của hình chóp S.ABCD bị cắt bởi mặt phẳng α .
Cho tứ diện đều ABCD có cạnh bằng a. Gọi E,F lần lượt là các điểm đối xứng của B qua C, D và M là trung điểm của đoạn thẳng AB. Gọi T là thiết diện của tứ diện ABCD khi cắt bởi mặt phẳng (MEF). Tính diện tích S của thiết diện (T).
Cho tứ diện đều ABCD cạnh a. Gọi M,N,G lần lượt là trung điểm của các cạnh AB, BC và trọng tâm tam giác ACD. Diện tích của thiết diện khi cắt tứ diện bởi mặt phẳng (MNG) bằng
Cho tứ diện ABCD và M, N là các điểm thay đổi trên cạnh AB và CD sao cho A M M B = C N N D . Gọi P là một điểm trên cạnh AC và S là diện tích thiết diện cắt bởi mặt phẳng (MNP) và hình chóp. Tính tỉ số k của diện tích tam giác MNP và diện tích thiết diện S
A. 2 k k + 1 .
B. 1 k .
C. k k + 1 .
D. 1 k + 1 .
Cho hình chóp A.BCD có đáy là tam giác đều cạnh a. Hình chiếu vuông góc của A trên mặt phẳng đáy là trung điểm H của CD. Cắt hình chóp bởi mặt phẳng ( α ) song song với AB và CD. Tính diện tích S của thiết diện thu được, biết d ( B , ( α ) ) = a 2 và A B = a 2 .
Cho hình chóp đều S.ABCD có đáy và cạnh bên đều bằng 2. Gọi O là tâm đáy, M và N lần lượt là trung điểm của OA và SO. Xét mặt phẳng α chứa đường thẳng MN và song song với đường thẳng BD. Diện tích của thiết diện tạo bởi α và hình chóp bằng
Cho tứ diện đều ABCD có cạnh bằng a. Gọi M, N lần lượt là trung điểm của các cạnh AB, BC và E là điểm đối xứng với B qua D. Mặt phẳng (MNE) chia khối tứ diện ABCD thành hai khối đa diện, trong đó khối chứa điểm A có thể tích V. Tính V.
Cho tứ diện đều ABCD cạnh a. Gọi K là trung điểm của AB, M, N lần lượt là hình chiều của K lên AD và AC. Tính theo a bán kính mặt cầu ngoại tiếp hình chóp K.CDMN?
Cho tứ diện đều ABCD có cạnh bằng a. Gọi M, N lần lượt là trung điểm của các cạnh AB, BC và E là điểm đối xứng với B qua D. Mặt phẳng (MNE) chia khối tứ diện ABCD thành hai khối đa diện, trong đó khối đa diện chứa đỉnh A có thể tích V . Tính V .
A. 7 2 a 3 216
B. 11 2 a 3 216
C. 13 2 a 3 216
D. 2 a 3 18