Cho tứ diện ABCD có thể tích V . Gọi M, N, P, Q lần lượt là trọng tâm tam giác ABC, ACD, ABD và BCD . Thể tích khối tứ diện MNPQ bằng
A. 4 V 9
B. V 27
C. V 9
D. 4 V 27
Cho tứ diện ABCD và điểm M nằm trong tam giác BCD.
a) Dựng đường thẳng qua M song song với hai mặt phẳng (ABC) và (ABD). Giả sử đường thẳng này cắt mặt phẳng (ACD) tại B'.
Chứng minh rằng AB', BM và CD đồng quy tại một điểm.
b) Chứng minh M B ' B A = d t ∆ M C D d t ∆ B C D
c) Đường thẳng song song với hai mặt phẳng (ACB) và (ACD) kẻ từ M cắt (ABD) tại C' và đường thẳng song song với hai mặt phẳng (ADC) và (ADB) kẻ từ M cắt (ABC) tại D'. Chứng minh rằng M B ' B A + M C ' C A + M D ' D A = 1
Cho khối chóp S.ABCD có đáy ABCD là hình chữ nhật. Một mặt phẳng thay đổi nhưng luôn song song với đáy và cắt các cạnh bên SA, SB, SC, SD lần lượt tại M, N, P, Q. Gọi M' , N', P', Q lần lượt là hình chiếu vuông góc của M, N, P, Q lên mặt phẳng (ABCD) Tính tỉ số A M S A để thể tích khối đa diện MNPQ.M'N'P'Q' đạt giá trị lớn nhất.
A. 2 3
B. 1 2
C. 1 3
D. 3 4
Cho khối chóp S. ABCD có đáy ABCD là hình chữ nhật. Một mặt phẳng thay đổi nhưng luôn song song với đáy và cắt các cạnh bên SA, SB, SC, SD lần lượt tại M, N, P, Q. Gọi M' , N', P', Q lần lượt là hình chiếu vuông góc của M, N, P, Q lên mặt phẳng (ABCD) Tính tỉ số S M S A để thể tích khối đa diện MNPQ.M’N’P’Q’ đạt giá trị lớn nhất
A. 2 3
B. 1 2
C. 1 3
D. 3 4
cho tứ diện ABCD và điểm M nằm trong tứ diện, qua M dựng các mặt phẳng (a) song song (BCD), (b) song song (ACD), (c) song song (ABD), (d) song song (ABC). Biết (a) cắt AB tại E, (b) cắt BC tại F, (c) cắt CD tại P, (d) cắt AD tại Q
cmr: \(\sqrt{\dfrac{EA}{EB}}+\sqrt{\dfrac{FB}{FC}}+\sqrt{\dfrac{PC}{PD}}+\sqrt{\dfrac{QD}{QA}}\ge4\sqrt{3}\)
Cho tứ diện ABCD. Qua điểm M nằm trên AC ta dựng một mặt phẳng (α) song song với AB và CD. Mặt phẳng này lần lượt cắt các cạnh BC, BD và AD tại N, P và Q.
a) Tứ giác MNPQ là hình gì?
b) Gọi O là giao điểm hai đường chéo của tứ giác MNPQ. Tìm tập hợp các điểm O khi M di động trên đoạn AC.
Cho tứ diện đều ABCD có cạnh bằng 1. Gọi M, N là hai điểm thay đổi lần lượt thuộc cạnh BC, BD sao cho mặt phẳng (AMN) luôn vuông góc với mặt phẳng (BCD) Gọi V 1 , V 2 lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của thể tích khối tứ diện ABMN. Tính V 1 + V 2
Cho tứ diện ABCD có M, N, P lần lượt là trung tâm tam giác ABC, ACD, ABD
a) Chứng minh (BCD) song song các đường thẳng MN, MP, NP
b) Tìm thiết diện của tứ diện khi cắt bởi (MNP)
Giúp em với em cần gấp cảm ơn
Giải đơn giản và chu tiết
Cho tứ diện ABCD. Gọi M, N, P lần lượt là trung điểm của AB, AC, AD. Các đường thẳng MN, NP, PM có song song với mặt phẳng (BCD) không?