\(S=\frac{4}{3\times7}+\frac{4}{7\times11}+\frac{4}{11\times15}+...+\frac{4}{\left(4x-1\right)\times\left(4x+3\right)}\)
\(=\frac{7-3}{3\times7}+\frac{11-4}{7\times11}+\frac{15-11}{11\times15}+...+\frac{\left(4x+3\right)-\left(4x-1\right)}{\left(4x-1\right)\times\left(4x+3\right)}\)
\(=\frac{1}{3}-\frac{1}{7}+\frac{1}{7}-\frac{1}{11}+\frac{1}{11}-\frac{1}{15}+...+\frac{1}{4x-1}-\frac{1}{4x+3}\)
\(=\frac{1}{3}-\frac{1}{4x+3}=\frac{664}{1995}\)
\(\Leftrightarrow\frac{1}{4x+3}=\frac{1}{1995}\)
\(\Leftrightarrow4x+3=1995\)
\(\Leftrightarrow x=498\).
Số hạng cuối cùng của dãy \(S\)là: \(\frac{1}{1991\times1995}\).
Tổng \(S\)có \(498\)số hạng.