A=\(1+3+3^2+3^3+...+3^{119}\)
3A=\(3+3^{^2}+3^3+3^4+...+3^{120}\)
3A-A=( \(3+3^{^2}+3^3+3^4+...+3^{120}\))-(\(1+3+3^2+3^3+...+3^{119}\))
2A=\(3^{120}-1\)
A=\(\frac{3^{120}-1}{2}\)
TA CÓ: \(3^{120}\)CÓ CHỮ SỐ TẬN CÙNG LÀ 1 => \(\frac{....1-1}{2}\)= \(\frac{...0}{2}=0\)
VẬY, CHŨ SỐ TẬN CÙNG CỦA A LÀ 0