\(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}\)
\(\Rightarrow\frac{a^3}{b^3}=\frac{b^3}{c^3}=\frac{c^3}{d^3}=\frac{a^3+b^3+c^3}{b^3+c^3+d^3}=\frac{a}{b}.\frac{b}{c}.\frac{c}{d}=\frac{a}{d}\)
\(\Rightarrow\frac{a^3+b^3+c^3}{b^3+c^3+d^3}=\frac{a}{d}\)( đpcm )
\(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}\)
\(\Rightarrow\frac{a^3}{b^3}=\frac{b^3}{c^3}=\frac{c^3}{d^3}=\frac{a^3+b^3+c^3}{b^3+c^3+d^3}=\frac{a}{b}.\frac{b}{c}.\frac{c}{d}=\frac{a}{d}\)
\(\Rightarrow\frac{a^3+b^3+c^3}{b^3+c^3+d^3}=\frac{a}{d}\)( đpcm )
Cho tỉ lệ thức : \(\frac{a}{b}=\frac{c}{d}\). CMR
a,\(\frac{ma+nb}{ma-mb}=\frac{mc+nd}{mc-nd}\)
b, \(\left(\frac{a-b}{c-d}\right)^3=\frac{a^3+b^3}{c^3+d^3}\)
Cho tỉ lệ thức \(\frac{a}{b}=\frac{c}{d}\left(b\ne d\right)\).Chứng tỏ rằng ta có các tỉ lệ thức:
\(\left(\frac{a+b}{c+d}\right)^3=\frac{a^3+b^3}{c^3+d^3}\)
Cho tỉ lệ thức: \(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}\)
Chứng minh rằng : \(\frac{a^3+b^3+c^3}{b^3+c^3+d^3}=\frac{a}{d}\)Cho tỉ lệ thức: \(\frac{a}{b}=\frac{c}{d}\).Chứng minh:
\(\frac{a.b}{c.d}=\frac{a^2+b^2}{c^2+d^2}\); \(\frac{\left(a+b\right)^3}{\left(c+d\right)^3}=\frac{a^3+b^3}{c^3+d^3}\)
Tỉ lệ thức \(\frac{a}{b}=\frac{c}{d}\). CMR
\(\frac{7\cdot a^3+3\cdot a\cdot b}{11\cdot a^2-8\cdot b^2}=\frac{7\cdot c^2+3\cdot c\cdot d}{11\cdot c^2+8\cdot d^2}\)
Bài 1:Cho a;b;c;d thỏa mãn
(a+b+c+d)(a-b-c+d)=(a-b+c-d)(a+d-c-d)
CMR:a;b;c;d lập được thành tỉ lệ thức
Bài 2:Cho\(\frac{x}{a+2b+c}=\frac{y}{2a+b-c}=\frac{z}{4a-4b+c}\)
CMR:\(\frac{a}{x+2y+z}=\frac{b}{2x+y-c}=\frac{c}{4x-4y+z}\)
Bài 3:Cho\(\frac{1}{c}=\frac{1}{2}\left(\frac{1}{a}+\frac{1}{b}\right)CMR:\frac{a}{b}=\frac{a-c}{c-b}\)
bài 1: cho tỉ lệ thức \(\frac{a}{b}=\frac{c}{d}\)
a) CMR: (a+2c)(b+d)=(a+c)(b+2d) \(\left(b,d\ne0\right)\)
b) CMR: (a+c)(b-d)=ab-cd
c) CMR: \(\frac{a}{a-b}=\frac{c}{c-d}\left(a,b,c,d>0;a\ne b,c\ne d\right)\)
bài 2: cho \(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}CMR:\left(\frac{a+b+c}{b+c+d}\right)^3=\frac{a}{d}\)
1. Cho \(\frac{a+b+c}{a+b-c}=\frac{a-b+c}{a-b-c}\) trong đó b khác 0. CMR: c = 0
2.Cho tỉ lệ thức \(\frac{a+b}{b+c}=\frac{c+d}{a+d}\) . CMR: a = c hoặc a+b+c+d=0
3.Tìm các số x,y,z biết rằng:
\(\frac{y+z+1}{x}=\frac{x+z+z}{y}=\frac{y+z-3}{z}=\frac{1}{x+y-z}\)
CÁC BẠN NHỚ GIẢI CHI TIẾT GIÙM MK MKA, MK ĐAG CẦN GẤP LẮM!!!
giả sử các tỷ lệ đã cho hoặc yêu cầu đều có nghĩa.
Cho tỷ lệ thức: \(\frac{a}{b}\)=\(\frac{c}{d}\)
CMR: a, \(\frac{a}{b}\)=\(\frac{a+2c}{b+2d}\) b, \(\frac{a-b}{b}\)=\(\frac{a+c-b-d}{b+d}\) c,\(\frac{a^3+2c^3}{b^3+d^3}\)=\(\frac{\left(a+c\right)^3}{\left(b+d\right)^3}\) d,\(\frac{ab}{cd}\)=\(\frac{\left(a+2b\right)^2}{\left(c+2d\right)^2}\)