chac phai la \(\frac{a}{b}\)=\(\frac{c}{d}\)chu
Đặt \(\frac{a}{b}\)= \(\frac{c}{d}\)= k thì a = bk ,c = dk.
Ta có : \(\frac{ac}{bd}\)= \(\frac{bk.dk}{bd}\)= \(\frac{bd.k^2}{bd}\)= \(k^2\) (1)
\(\frac{a^2+c^2}{b^2+d^2}\) = \(\frac{\left(bk\right)^2+\left(dk\right)^2}{b^2+d^2}\) = \(\frac{b^2k^2+d^2k^2}{b^2+d^2}\) = \(\frac{\left(b^2+d^2\right).k^2}{b^2+d^2}\) = \(^{k^2}\) (2)
Từ (1) và (2) suy ra \(\frac{ac}{bd}\) = \(\frac{a^2+c^2}{b^2+d^2}\)