Đặt Bằng a = bk
c = dk Rồi thay vào biểu thức nha bạn
Đặt Bằng a = bk
c = dk Rồi thay vào biểu thức nha bạn
Cho \(\frac{a}{b}=\frac{c}{d}.\)Chứng minh.
a)\(\frac{3a+5b}{3a-5b}=\frac{3c+5d}{3c-5d}\)
b)\(\left(\frac{a+b}{c+d}\right)^2=\frac{a^2+b^2}{c^2+d^2}\)
\(\frac{a.b}{c.d}=\frac{\left(a-b\right)^2}{\left(c-d\right)^2}\)
Cho tỉ lệ thức \(\frac{a}{b}=\frac{c}{d}\)
a,\(\frac{a-b}{a+b}=\frac{c-d}{c+d};\)
b,\(\frac{2a+5b}{3a-4b}=\frac{2c+5d}{3c-4d};\)
c,\(\frac{ab}{cd}=\frac{\left(a-b\right)^2}{\left(c-d\right)^2};\)
Cho \(\frac{a}{b}=\frac{c}{d}\).Chứng minh rằng :
a ) \(\frac{a+c}{c}=\frac{b+d}{d}\)
b ) \(\frac{3a+5b}{3a-5b}=\frac{3c+5d}{3c-5d}\)
c ) \(\frac{a^2+c^2}{b^2+d^2}=\frac{ab}{bd}\)
Lưu ý : spam + tl linh tinh,cop bài vớ vẩn = báo cáo
Cho tỉ lệ thức a/b=c/d CMR :
a) \(\frac{7a+8b}{7a-8b}=\frac{7c+8d}{7c-8d}\)
b) \(\frac{11a-5b}{3a+4b}=\frac{11c-5d}{3c+4d}\)
c) \(\frac{a.b}{c.d}=\frac{a^2-b^2}{c^2-d^2}\)
d) \(\frac{\left(a+b\right)^2}{\left(c+d\right)^2}=\frac{a^2+b^2}{c^2+d^2}\)
e) \(\frac{ab}{cd}=\frac{\left(a-b\right)^2}{\left(c-d\right)^2}\)
help me 3 l-i-k-e
cho tỉ lệ thức \(\frac{a}{b}=\frac{c}{d}\) chứng minh \(\frac{3a+5b}{3a-5b}=\frac{3c+5d}{3c-5d}\)
Ch\(\frac{a}{b}=\frac{c}{d}\)CMR:
a, \(\frac{2a+5b}{3a-4b}=\frac{2c+5d}{3c-4d}\)
b, \(\frac{ab}{cd}=\frac{\left(a-b\right)^2}{\left(c-d\right)^2}\)
Cho \(\frac{a}{b}=\frac{c}{d}\). Chứng minh:
a) \(\frac{\left(a-b\right)^3}{\left(c-d\right)^3}=\frac{3a^2+2b^2}{3c^2+2d^2}\)
b)\(\frac{4a^4+5b^4}{4c^4+5d^4}=\frac{a^2b^2}{c^2d^2}\)
c)\(\left(\frac{a-b}{c-d}\right)^{2005}=\frac{2a^{2005}-b^{2005}}{2c^{2005}-d^{2005}}\)
d)\(\frac{2a^{2005}+5b^{2005}}{2c^{2005}+5d^{2005}}=\frac{\left(a+b\right)^{2005}}{\left(c+d\right)^{2005}}\)
e)\(\frac{\left(20a^{2006}+11b^{2006}\right)^{2007}}{\left(20a^{2007}-11b^{2007}\right)^{2006}}=\frac{\left(20c^{2006}+11d^{2006}\right)^{2007}}{\left(20c^{2007}-11d^{2007}\right)^{2006}}\)
f)\(\frac{\left(20a^{2007}-11c^{2007}\right)^{2006}}{\left(20a^{2006}+11c^{2006}\right)^{2007}}=\frac{\left(20b^{2007}-11d^{2007}\right)^{2006}}{\left(20b^{2006}+11d^{2006}\right)^{2007}}\)
cho \(\frac{a}{b}=\frac{c}{d}cmr\frac{3a+5b}{3a-5b}=\frac{3c+5d}{3c-5d}\)
cho \(\frac{a}{b}=\frac{c}{d}\left(a,b,c,d\ne0\right)\)và đôi 1 khác nhau , khác đôi nhau .
Chứng minh rằng :
a, \(\frac{a-b}{a+b}=\frac{c-d}{c+d}\)
b, \(\frac{2a+5b}{3a-4b}=\frac{2c-5d}{3c-4d}\)