Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
nguyen van quyen

cho tỉ lệ thức a+b/b+c = c+d/d+a chứng minh rằng a = c hoặc a+b+c+d =0

Hồng Anh
30 tháng 8 2016 lúc 14:04

Áp dụng tính chất dãy tỉ số bằng nhau,ta có:\(\frac{a+b}{b+c}=\frac{c+d}{d+a}=\frac{a+b+c+d}{a+b+c+d}\)

Th1:a+b+c+d=0=>\(\frac{a+b+c+d}{a+b+c+d}=\frac{0}{a+b+c+d}=0suyra\frac{a+b}{b+c}=\frac{c+d}{d+a}=0\)

Th2:a+b+c+d khác 0=>\(\frac{a+b+c+d}{a+b+c+d}=1\)suy ra\(\frac{a+b}{b+a}=\frac{c+d}{d+a}=1\)=>(a+b)(d+a)=(b+a)(c+d)=>a+d=c+d<=>a=c

Vậy a+b+c+d=0 hoặc a=c

 ❤♚ℳℴℴทℛℴƴຮ♚❤
7 tháng 3 2020 lúc 18:26

Ta có:\(\frac{a+b}{b+c}=\frac{c+d}{d+a}\)

\(\implies\)\(\frac{a+b}{c+d}=\frac{b+c}{d+a}\)

\(\implies\) \(\frac{a+b}{c+d}+1=\frac{b+c}{d+a}+1\)

\(\implies\) \(\frac{a+b+c+d}{c+d}=\frac{a+b+c+d}{d+a}\)

\(\implies\) \(\frac{a+b+c+d}{c+d}-\frac{a+b+c+d}{d+a}=0\)

\(\implies\) \(\left(a+b+c+d\right)\left(\frac{1}{c+d}-\frac{1}{d+a}\right)=0\)

\(\implies\)\(\orbr{\begin{cases}a+b+c+d=0\\\frac{1}{c+d}-\frac{1}{d+a}=0\end{cases}}\)

\(\implies\) \(\orbr{\begin{cases}a+b+c+d=0\\\frac{1}{c+d}=\frac{1}{d+a}\end{cases}}\)

\(\implies\) \(\orbr{\begin{cases}a+b+c+d=0\\c+d=d+a\end{cases}}\)

\(\implies\) \(\orbr{\begin{cases}a+b+c+d=0\\c=a\end{cases}}\)

Khách vãng lai đã xóa

Các câu hỏi tương tự
Nguyễn Hữu Huy
Xem chi tiết
nguyên quang huy
Xem chi tiết
Làm gì mà căng
Xem chi tiết
Nguyễn Ngọc Hải
Xem chi tiết
lê phát minh
Xem chi tiết
Đinh Ngọc Diệp
Xem chi tiết
Phuc diêm
Xem chi tiết
Pham Trung
Xem chi tiết
Phạm Đình Mạnh
Xem chi tiết