Cho \(\Delta ABC\)vuông tại A, đường cao AH. Gọi D và E lần lượt là hình chiếu của H trên AB và AC. Chứng minh rằng \(\sqrt[3]{BC};\sqrt[3]{BD};\sqrt[3]{CE}\)là độ dài ba cạnh của một tam giác vuông
Cho tam giác ABC nội tiếp đường tròn tấm (0) đường kính BC.kẻ AH vuông góc với BC (H thuộc BC ),gọi M,N lần lượt là hình chiếu vuông góc của H trên AB, AC.
1,c/m AC2=CH.CB
2,c/m tứ giác BCNM nội tiếp và AC.BM+AB.CN=AH.BC
3,đường thẳng đi qua A cắt tia HM tại E và cắt tia đối cửa tia NH tại F .c/m BF//CF
(Hộ Mk với,Mk đang cần gấp!)
Cho tam giác ABC có 3 góc nhọn, đường cao AH. Gọi M và N lần lượt là các điểm đối xứng của H qua AB và AC
1) Cm tứ giác AMBH nội tiếp
2) Cm AM=AH=AN
3) Gọi giao điểm của MN với AB và AC lần lượt là F và E. Cm E thuộcđường tròn ngoại tiếp tứ giác AMBH
4) Cm 3 đường thẳng AH,BE,CF đồng quy
Cho M thuộc ( O ) đường kính AB , ( M khác A và B )( MA < MB ) . Tia phân giác góc AMB cắt AB tại C . Qua C vẽ đường thẳng vuông góc với AB cắt các đường thẳng AM và BM lần lượt tại D và H . Biết 2 đường thẳng AH và BC cắt nhau tại N và N thuộc ( O ) .E là Hình chiếu của H trên tiếp tuyến tại A của ( O ) ., F là hình chiếu của D trên tiếp tuyến tại B của ( O ) . Chứng minh :
a) E , N , M , F thẳng hàng .
b) Gọi S1 , S2 lần lượt là diện tích của ACHE và BCDF . CHứng minh : \(CM^2< \sqrt{S1S2}\) .
cho tam giác ABC có góc A = 90 độ , đường cao AH , gọi D và E lần luotj là hình chiếu của H trên AB và AC. Biết BH=4cm, HC=9cm.
a, tính độ dài DE
b, cm : AD.DB=AE.AC
c, các đường thẳng vuông góc với DE tại D và E lần lượt cắt BC tại M , n
cm : M là trung điểm của BH , N là trung điểm của CH
d, tính diện tích tứ giác DEMN
( vẽ giúp hình là chính ạ camon)
Cho tam giác ABC vuông tại A, đường cao AH. Gọi I,K lần lượt là hình chiếu của H trên cạnh AB và AC. Đặt AB = c , AC = b
a) Tính AI, AK theo b,c
b) CMR : \(\frac{BI}{CK}=\frac{c^3}{b^3}\)
Cho một đường tròn tâm O,đường kính AB=12cm dây CD có độ dài = 12cm và vuông góc với AB tại H
a,Tính AH,HB
b,Gọi M,N lần lượt là hình chiếu của H lên AC,BC . Tính S tứ giác CMHN
cho tam giác ABC nhọn ngoại tiếp (I). (I) tiếp xúc vs BC, AB, AC lần lượt tại D, E , F . gọi H là hình chiếu của D trên EF. chứng minh rằng: HD là đường phân giác của BHC
Cho Δ ABC vuông tại A đường cao AH. D và E là hình chiếu của H lên AB và AC. Biết AB = 6 cm, BC = 10 cm.
a) Tính BH, AH, \(\dfrac{AD}{AE}\)
b) CM: DE = BC . sinB . cosB