https://olm.vn/hoi-dap/question/61610.html
..............................
có các câu hỏi tương tự, khá giống đó bạn ak
https://olm.vn/hoi-dap/question/61610.html
..............................
có các câu hỏi tương tự, khá giống đó bạn ak
Cho a, b, c, d, thỏa mãn \(b^2=ac\)\(c^2=bd\)và \(b^3-2018c^3-2019d^3\ne0\)
CM\(\frac{a^3-2018b^3-2019c^3}{b^3-2018c^3-2019d^3}=\frac{a}{d}\)R
Cho \(a,b,c\in R\)và \(a,b,c\ne0\)thỏa mãn: \(b^2=ac\). Chứng minh rằng:
\(\frac{a}{c}=\frac{\left(a+2010b\right)^2}{\left(b+2012c\right)^2}\)
Cho \(\frac{a}{b}=\frac{c}{d}\)(a, b, c khác 0)
CM:\(\frac{a^2+b^2}{b^2+c^2}=\frac{\left(a+2018b\right)^2}{\left(b+2018c\right)^2}\)
cho a, b, c \(\in\)R và a, b, c \(\ne0\) thỏa mãn \(b^2=ac\). CMR: \(\frac{a}{c}=\frac{\left(a+2007b\right)^2}{\left(b+2007c\right)^2}\)
Bài 1
Cho \(\frac{a+b+c}{a+b-c}=\frac{a-b+c}{a-b-c}\left(b\ne0\right)\)
Chững minh c=0
Bài 2
Cho tỉ lệ thức \(\frac{a+b}{b+c}=\frac{c+d}{d+a}\)
Chững minh a + b+ c+ d = 0
Bài 3
Cho \(\frac{cx-az}{b}=\frac{ay-bx}{c}=\frac{bz-cy}{a}\)
Chững mình rằng \(\frac{x}{a}=\frac{y}{b}=\frac{z}{c}\)
Bài 4
Cho a + b = c + d và \(a^2+b^2+c^2=c^2+d^2\left(a,b,c,d\ne0\right)\)
Chững minh rằng 4 số a,b, c, d lập thành 1 tỉ lệ thức
Bài 5
Cho \(\left(x1P-y1Q\right)^{2n}+\left(x2P+y2Q\right)^{2m}+...+\left(xkP-ykQ\right)^{2k}\le0\left(n,m,...,k\inℕ^∗;P,Q\ne0\right)\)
Chứng minh rằng \(\frac{x1+x2+x3+...+xk}{y1+y2+y3+...+yk}\)
Bài 6
Biết rằng \(\hept{\begin{cases}a1^2+a2^2+a3^2=P^2\\b1^2+b2^2+b3^2=Q^2\end{cases}}\) và \(a1\cdot b1+a2\cdot b2+a3\cdot b3=P\cdot Q\)
Chứng minh \(\frac{a1}{b1}=\frac{a2}{b2}=\frac{a3}{b3}=\frac{P}{Q}\)
Bài 7
Cho 4 số a, b, c, d khác 0 thảo mãn \(\left(ad+bc\right)^2=4abcd\)
Chững minh rằng 4 số a, b, c ,d có thê rlaapj thành 1 tỉ lệ thức
Bài 8
Cho các số a, b, c thảo mãn \(\frac{a}{2010}=\frac{b}{2011}=\frac{c}{2012}\)
a. Tính \(M=\frac{2a-3b+c}{2c-3b}\)
b. Chứng minh rằng \(a\cdot\left(a-b\right)\cdot\left(b-c\right)=\left(a-c\right)^2\)
các số a,b,c,d thỏa mãn điều kiện:
\(\frac{a}{3b}=\frac{b}{3c}=\frac{c}{3d}=\frac{d}{3a}\left(a+b+c+d\ne0\right)\)
chứng minh rằng a=b=c=d
\(Cho:\frac{a}{2b}+\frac{b}{2c}+\frac{c}{2d}+\frac{d}{2a}\)\(\left(a,b,c,d>0\right)\)Tính:\(\frac{2019a-2018b}{c+d}+\frac{2019b-2018c}{a+d}+\frac{2019c-2018d}{a+b}+\frac{2019d-2018a}{c+b}\)
Cho 4 số dương a;b;c;d. Biết rằng \(b=\frac{a+c}{2};c=\frac{2bd}{b+d}\)
Chứng minh 4 số này lập thành 1 tỉ lệ thức
B2
Cho \(\frac{1}{c}=\frac{1}{2}\left(\frac{1}{a}+\frac{1}{b}\right);\left(a;b;c\ne0;b\ne c\right)\) . Chứng minh \(\frac{a}{b}=\frac{a-c}{c-b}\)
cho a,b,c thuộc R và a,b,c khác 0 thỏa mãn \(b^2=ac\).chứng minh rằng\(\frac{a}{c}=\frac{\left(a+2007b\right)^2}{\left(b+2007c\right)^2}\)