L={n∣n=2k+1L={n∣n=2k+1 với k∈N}k∈N}
a)a)
+)+) Bốn số tự nhiên thuộc tập L:3;7;11;9L:3;7;11;9
+)+) Hai số tự nhiên không thuộc tập L:2;4L:2;4
b)b)
L={n∈N∣nL={n∈N∣n là số lẻ }
L = {n| n = 2k + 1 với k ∈ N }.
a)
+) Với k = 0, ta được: n = 2. 0 + 1 = 1 ∈ L
+) Với k = 1, ta được: n = 2. 1 + 1 = 3 ∈ L
+) Với k = 2, ta được: n = 2. 2 + 1 = 5 ∈ L
+) Với k = 3, ta được: n = 2. 3 + 1 = 7 ∈ L
Do đó bốn số tự nhiên thuộc tập L là: 1; 3; 5; 7
Vậy ta thấy hai số tự nhiên không thuộc tập L là: 0; 2
b)
Nhận thấy các số: 1; 3; 5; 7; ... là các số tự nhiên lẻ.
Tương tự với mọi số tự nhiên k thì ta tìm được các số n thuộc tập hợp L đều là các số tự nhiên lẻ.
Do đó ta viết có thể viết tập hợp L bằng cách nêu dấu hiệu đặc trưng khác như sau:
L = {n ∈ ℕ | n là các số lẻ}.