Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Thầy Cao Đô

Cho tập $A = \{1; \, 2; \, 3; \, ...; \, 16\}$. Tìm số nguyên dương $k$ nhỏ nhất sao cho trong mỗi tập con gồm $k$ phần tử của $A$ đều tồn tại hai số phân biệt $a$, $b$ mà $a^2 + b^2$ là một số nguyên tố.

Đoàn Xuân Tùng
23 tháng 5 lúc 11:26

d

Đặng Thị Quỳnh
18 tháng 6 lúc 23:22

Nếu ta chọn một tập toàn số chẵn thì a^2+b^2 là hợp số. Trong tập A lại có 8 số chẵn nên k>8=>k>=9. Ta sẽ chứng minh k=9 là giá trị nhỏ nhất cần tìm.

Xây dựng dãy gồm 8 phần tử:

(1,4);(2,3);(5,8);(6,11);(7,10);(9,16);(12,13);(14,15)

Theo dirichlet toàn tại 2 phần tử cùng thuộc 1 số trong dãy trên nên ta sẽ có ngay điều phải chứng minh (Do tổng bình phương các số trong đó đều là snt)
 


Các câu hỏi tương tự
Thầy Cao Đô
Xem chi tiết
Thầy Cao Đô
Xem chi tiết
Thầy Cao Đô
Xem chi tiết
Thầy Cao Đô
Xem chi tiết