\(tan\alpha+cot\alpha=\frac{cos\alpha}{sin\alpha}+\frac{sin\alpha}{cos\alpha}=\frac{cos^2\alpha+sin^2\alpha}{sin\alpha.cos\alpha}=\frac{1}{sin\alpha.cos\alpha}=3\)rồi suy ra sin a .cosa = 1/3
\(tan\alpha+cot\alpha=\frac{cos\alpha}{sin\alpha}+\frac{sin\alpha}{cos\alpha}=\frac{cos^2\alpha+sin^2\alpha}{sin\alpha.cos\alpha}=\frac{1}{sin\alpha.cos\alpha}=3\)rồi suy ra sin a .cosa = 1/3
Câu 50**: Cho góc nhọn tuỳ ý giá trị biểu thức \(\dfrac{tan\alpha}{cot\alpha}+\dfrac{cot\alpha}{tan\alpha}-\dfrac{sin^2\alpha}{cos^2\alpha}\) bằng
A. \(tan^2\alpha\) ; B . \(cot^2\alpha\) ; C . 0 ; D. 1 .
Cho \(\tan\alpha=2 \)
Tính giá trị của \(A=\cot\alpha+\frac{\sin\alpha}{\sin\alpha+\cos\alpha}\)
Câu 50**: Cho góc nhọn α tuỳ ý giá trị biểu thức \(\dfrac{tan\alpha}{cot\alpha}+\dfrac{cot\alpha}{tan\alpha}-\dfrac{sin^2\alpha}{cos^2\alpha}\)bằng
A. \(tan^2\alpha\) ; B . \(cot^2\) α ; C . 0 ; D. 1 .
giải hộ mik vs
Cho \(\tan\alpha+\cot a=3\). Tính giá trị của biểu thức \(A=\sin\alpha.\cos\alpha\)
Chứng minh rằng giá trị của biểu thức sau không phụ thuộc vào giá trị của góc nhọn \(\alpha\)
a) A = \(\frac{\cot^2\alpha-\cos^2\alpha}{\cot^2\alpha}-\frac{\sin\alpha.\cos\alpha}{\cot\alpha}\)
b) B = \(\left(\cos\alpha-\sin\alpha\right)^2+\left(\cos\alpha+\sin\alpha\right)^2+\cos^4\alpha-\sin^4\alpha-2\cos^2\alpha\)
c) C = \(\sin^6x+\cos^6x+3\sin^2x.\cos^2x\)
Cho \(\tan\alpha=\dfrac{3}{5}\). Tính giá trị của các biểu thức sau:
M=\(\dfrac{\sin\alpha+\cos\alpha}{\sin\alpha-\cos\alpha}\)
N=\(\dfrac{\sin\alpha\times\cos\alpha}{\sin^2\alpha-\cos^2\alpha}\)
Chứng minh giá trị các biểu thức sau luôn là hằng số với mọi góc nhọn \(\alpha\)
\(a.\sin^4\alpha+\cos^4\alpha+2\sin^2\alpha\cdot\cos^2\alpha\)
\(b.\cos^2\alpha+\sin^2\alpha+\tan^2\alpha\cdot\cos^2\alpha+\cot^2\alpha\cdot\sin^2\alpha\)
tính giá trị của biểu thức sau
A=\(\frac{tan^215độ-1}{cot75độ-1}-cot75độ\)
B=\(\sin\alpha.\cos\alpha\)biết \(\tan\alpha+\cot\alpha=3\)
Rút gọn các biểu thức:
a)\(\left(\sin\alpha+\cos\alpha\right)^2+\left(\sin\alpha-\cos\alpha\right)^2\)
b)\(\cot^2\alpha-\cos^2\alpha.\cot^2\alpha\)
c)\(\sin\alpha.\cos\alpha\left(\tan\alpha+\cot\alpha\right)\)
d)\(\tan^2\alpha-\sin^2\alpha.\tan^2\alpha\)