Chứng minh các hệ thức sau:
a) \(\frac{1-cos\alpha}{sin\alpha}=\frac{sin\alpha}{1+cos\alpha}\)
b) \(tan^2\alpha-sin^2\alpha=tan^2\alpha.sin^2\alpha\)
c) \(\frac{1-tan\alpha}{1+tan\alpha}=\frac{cos\alpha-sin\alpha}{cos\alpha+sin\alpha}\)
Cho tan \(\alpha\)=\(\frac{3}{5}\). Tính
A= \(\frac{\sin\alpha+\cos\alpha}{\sin\alpha-\cos\alpha}\)
B=\(\frac{\sin\alpha\cdot\cos\alpha}{\sin^2\alpha-\cos^2\alpha}\)
C=\(\frac{\sin^3\alpha\cdot\cos^3\alpha}{2\sin\alpha\cdot\cos^2\alpha+\cos\alpha\cdot\sin^2\alpha}\)
Giúp mình với . MÌnh cảm ơn
Cho \(\tan\alpha=\frac{3}{5}\)
Tính: \(\frac{\sin^3\alpha+\cos^3\alpha}{2\sin\alpha.\cos^2\alpha+\cos\alpha.\sin^2\alpha}\)
CMR: \(\frac{\sin^2\alpha}{\cos\alpha\left(1+\tan\alpha\right)}-\frac{\cos^2\alpha}{\sin\alpha\left(1+\cot\alpha\right)}=\sin\alpha-\cos\alpha\)
Cho góc nhọn \(\alpha\)thỏa mãn \(\tan\alpha=\frac{2}{\sqrt{3}}\). Tính: \(B=\frac{\cos^4\alpha+\sin^2\alpha\left(\cos^2\alpha+1\right)}{2\cos^4\alpha+2\sin^2\cos^2-\frac{3}{5}\sin^2\alpha}\)
CMR: \(\frac{\sin^4\alpha-\cos^2\alpha+2\cos^4\alpha-\cos^6\alpha}{\cos^4\alpha-\sin^2\alpha+2\sin^4\alpha-\sin^6\alpha}=\tan^6\alpha\)
Chứng minh:
a) \(\tan^2\alpha-\sin^2\alpha=\tan^2\alpha.\sin^2\alpha\)
b) \(\frac{1-\cos\alpha}{\sin\alpha}=\frac{\sin\alpha}{17\cos\alpha}\)
1) Cho: \(\tan\alpha=\frac{1}{2}\). Tính \(\frac{\cos\alpha+\sin\alpha}{\cos\alpha-\sin\alpha}\)
2) Cho: \(\cos\beta=2\sin\beta.\) Hãy tính: \(\sin\beta.\cos\beta\)
3)Chứng minh hệ thức:
a/ \(\frac{1+\cos\alpha}{\sin\alpha}=\frac{\sin\alpha}{1-\cos\alpha}\)
b/ \(\cot^2\alpha-\cos^2\alpha=\cot^2\alpha.\cos\alpha\)
tính
a) \(\tan^2\alpha-\sin^2\alpha-\tan^2\alpha\times\sin^2\alpha\)
b)\(\frac{sin^4\alpha-cos^4\alpha}{sin\alpha+cos\alpha}-sin\alpha+cos\alpha\)
cho \(\tan\alpha=3.Tính\frac{\cos\alpha+\sin\alpha}{\cos\alpha-\sin\alpha}\)