1) cho tam giác vuông ABC đường cao AH .gọi AD ;AE là phân giác các góc BAH và góc CAH .chứng minh rằng đường tròn nội tiếp tam giác BCA trùng với đường tròn ngoại tiếp tam giác ADE
2)cho tam giác ABC vuông tại A;gọi I là tâm đường tròn nội tiếp tam giác ABC ;các tiếp điểm trên BC;CA;AB lần lượt là D,E,F.gọi M là trung điểm của AC ,đường thẳng MI cắt các cạnh AB tại N ,đường thẳng DF cắt đường cao AH tại P .cmr tam giác APN cân
Cho tam giác ABC (AB nhỏ hơn AC) có 3 góc nhọn ,đường tròn tâm O đường kính BC cắt AB, AC lần lượt tại D và E. Gọi H là giao điểm của BE và CD, tia AH cắt cạnh BC tại F. Gọi I là trung điểm AH . Qua I kẻ đường thẳng vuông góc với AO cắt đường thẳng DE tại M. CM: AM là tiếp tuyến của đường tròn ngoại tiếp tam giác ADE
Cho tam giác ABC vuông tại A (AB < AC) ngoại tiếp đường tròn tâm O. Gọi D,E,F lần lượt là tiếp điểm của (O) với các cạnh AB,AC,BC. Đường thẳng BO cắt các đường thẳng EF và DF lần lượt tại I và K.
1. Tính số đo góc BIF
Cho tam giác ABC, AB<AC. Gọi D, E, F lần lượt là chân đường vuông góc kẻ từ A, B, C xuống BC, AC, AB. Gọi P là giao điểm của BC và EF. Đường thẳng qua D song song với EF lần lượt cắt các đường thẳng AB, AC, CF tại Q, R, S.
a) CMR BQCR nội tiếp đường tròn
b) CMR PB/PC = BD/CD và D là trung điểm của BC
c) Đường tròn ngoại tiếp tam giác PQR đi qua trung điểm của BC
Cho tam giác ABC nhọn (AB>AC) ngoại tiếp đường tròn tâm I. Đường tròn (I) tiếp xúc với các cạnh BC, CA, AB lần lượt tại D, E, F. Đường thẳng EF cắt (I) tại N (khác D). Cm MN là tiếp tuyến của đường tròn (I).
Cho tam giác ABC nhọn (AB>AC) ngoại tiếp đường tròn tâm I. Đường tròn (I) tiếp xúc với các cạnh BC, CA, AB lần lượt tại D, E, F. Đường thẳng EF cắt (I) tại N (khác D). Cm MN là tiếp tuyến của đường tròn (I).
Cho tam giác nhọn ABC (AB<AC) ngoại tiếp đường tròn tâm I. Đường tròn (I) tiếp xúc với các cạnh BC,CA,AB lần lượt tại D,E,F. Đường thẳng EF cắt đường thẳng BC tại M. Đường thằng AD cắt đường tròn (I) tại N(khác D). Chứng minh MN là tiếp tuyến của đường tròn (I).
các bạn giúp tớ với:
Cho tam giác ABC nhọn, đường phân giác góc A cắt BC tại D và cắt đường tròn ngoại tiếp tam giác tại I. Từ D hà DK,DH lần lượt vuông góc với AB,AC. Chứng minh diện tích tứ giác AKIH= diện tích tam giác ABC
Cho (I) nội tiếp tam giác nhọn ABC (AB<AC). Đường tròn (I) tiếp xúc BC, CA lần lượt tại D, E. Qua B kẻ đường thẳng vuông góc với BI cắt AI tại J. Gọi P là hình chiếu của J trên BC
a/ C/m BD=CP
b/ Gọi N là giao điểm của AJ và BC
C/m \(\dfrac{1}{AI}+\dfrac{1}{AJ}=\dfrac{2}{AN}\)
c/ Gọi Q là giao điểm JP và DE, K là trung điểm PQ. C/m BK vuông góc với AP