Cho tam giác ABC có 3 góc nhọn nội tiếp đường tròn ( O ). Ba đường cao AD,BE,CF cắt nhau tại H.
a) Chứng minh tứ giác ABDE là tứ giác nội tiếp. Xác định tâm S của đường tròn ngoại tiếp tứ giác ABDE.
b) Vẽ đường kính AK của ( O ). Chứng minh : AB×AC = AD×AK
c) Gọi I là trung điểm của HC. Chứng minh ST vuông góc ED.
d) Đường phân giác trong của góc BAC cắt BC tại M và cắt đường tròn ( O ) tại N ( N khác A ). Gọi I là tâm đường tròn nội tiếp tam giác ACM.
Gọi L là giao điểm của đường tròn ( O ) và CL. Chứng minh : N,O,L thẳng hàng.
e) Chứng minh ANKL là hình chữ nhật.
Cho tam giác ABC có ba góc nhọn ( AB bé hơn AC ) nội tiếp trong đường tròn tâm O. Hai đường cao BE và CF của tam giác ABC cắt nhau tại H.
a) chứng minh các tứ giác AEHF, BFEC nội tiếp được đường tròn
b) tia AH cắt BC tại D, kẻ đường kính AK của đường tròn tâm O. Chứng ming AB.AC= AD.2R
c) đường thẳng EF cắt đường tròn tâm O tại hai điểm M và N ( M thuộc cung nhỏ AB ). Chứng minh AM = AN
d) vẽ đường tròn tâm i đường kính AH cắt đường tròn tâm O tại S ( S khác A ), đường thẳng SA và BC cắt nhau tại T. Chứng minh ba điểm T, M, N thẳng hàng
Câu 5 (3,0 điểm). Cho tam giác ABC có ba góc nhọn nội tiếp đường tròn tâm O. Các đường cao
AD, BE, CF của tam giác ABC cắt nhau tại H.
a) Chứng minh các tứ giác AEHF, BFEC nội tiếp đường tròn.
b) Đường thẳng AO cắt đường tròn tâm O tại điểm K khác điểm A. Gọi I là giao điểm của
hai đường thẳng HK và BC. Chứng minh I là trung điểm của đoạn thẳng BC.
c, tinh AH/AD + BH/BE + CH/CF =2
Cho tam giác ABC nhọn nội tiếp đường tròn (O). các đường cao AD, BE và CF của tam giác ABC cắt nhau tại H.
a. Cm: tứ giác BCEF là tứ giác nội tiếp và xác định tâm I của đường tròn ngoại tiếp tứ giác.
b. Đường thẳng EF cắt đường thẳng BC tại M và cắt đường tròn (O) tại K và T (K nằm giữa M và T).
Cm: MK.MT=MD.MI
c. Cm: tứ giác IDKT là tứ giác nội tiếp
d. Đường thẳng vuông góc với IH tại I cắt các đường thẳng AB, AC và AD lần lượt tại N, S và G. Cm G là trung điểm của đoạn NS
BÀI 1 cho tam giác ABC vuông tại A .Nữa đường tròn đường kính AB cắt BC tại D.Trên cung AD lấy một điểm E .Nối BE và kéo dài AC tại F.Chứng minh tứ giác CDEF nội tiếp
BÀI 2: Cho đường tròn tâm O đường kính AB cố định ,CD là đường kính thay đổi của đường tròn (O) ( khác AB ) .Tiếp tuyến tại B của (O ) cắt AC và AD lần lượt tại N và M .Chứng minh tứ giác CDMN nội tiếp
BÀI 3 :Cho hai đoạn thẳng MN và PQ cắt nhau tại O .Biết OM.ON= PO.OQ.Chứng minh tứ giác MNPQ nội tiếp
BÀI 4: Cho tam giác ABC có đường cao AH . Gọi M, N lần lượt là hình chiếu vuông góc của H lên các cạnh AB, AC
a) c/m AMHN nội tiếp
b) BMNC nội tiếp
BÀI 5: Cho tam giác ABC các đường phân giác trong là BE và CF cắt nhau tại M và các đường phân giác ngoài của các góc B và góc C cắt nhau tại N .chứng minh BMCN nội tiếp
BÀI 6: Cho đường tròn (O) đường kính AB .Gọi M là một điểm trên tiếp tuyến xBy , đường thẳng AM cắt đường tròn (O) tại C , lấy D thuộc BM, nối AD cắt (O) tại I. c/m CIDM nội tiếp
BÀI 7: Cho đường tròn tâm (O) có cung EH và S là điểm chính giữa cung đó .Trên dây EH lấy hai điểm A và B .Các đường thẳng SA và SB cắt đường tròn lần lượt tại D và C .c/m ABCD là tứ giác nội tiếp
BÀI 8: Cho đường tròn (O) đường kính AB , từ A và B vẽ Ax vuông góc AB và By vuông góc BA (Ax và By cùng phía so với bờ AB ) .Vẽ tiếp tuyến x'My' (tiếp điểm M) cắt Ax tại C và By tại D ; OC cắt AM tại I và OD cắt BM tại K .Chứng minh CIKD nội tiếp
Cho tam giác ABC nhọn (AB < AC) vẽ đường tròn tâm O có đường kính BC cắt hai cạnh AB và AC theo thứ tự tại E và F ,gọi H là giao điểm của BE và CF, AH cắt BC tại D. Gọi I là trung điểm AH
a. Chứng minh tứ giác AEHF nội tiếp đường tròn tâm I và AD vuông góc BC
b. Chứng minh tứ giác OEIF nội tiếp và 5 điểm O, D, E, I, F cùng thuộc một đường tròn
C. cho biết BC = 6 cm và góc A = 60 độ Tính độ dài OI
Cho tam giác ABC nhọn nội tiếp đường tròn tâm O bán kính R. Đường cao AD, BE cắt nhau tại H. Kéo dài BE cắt đường tròn (O) tại F.
1)Chứng minh tứ giác CDHE là tứ giác nội tiếp
2) Kéo dài AD cắt (O) tại N. Chứng minh ∆AHF cân và C là điểm chính giữa cung NF
3) Gọi M là trung điểm của cạnh AB. Chứng minh ME là tiếp tuyến của đường tròn ngoại tiếp ∆CDE
Cho tam giác ABC nhọn(AB<AC) nội tiếp đường tròn(O) các đường cao AD,BE,CF cắt tại H. a)CM tứ giác BFEC nội tiếp và góc EDH=góc FDH b) Gọi I là trung điểm của DE và CF cắt đường tròn tại N ,ND cắt (O) tại K.CM: A,I,K thẳng hàng
Cho tam giác ABC nhọn nội tiếp (O) . Các đường cao AD, BE , và CF cắt nhau tại H . Đường thẳng EF cắt đường tròn ở I và K a) chứng minh : Tứ giác CDHE nội tiếp đường trònb) Chứng minh : AH . AD = AF . ABc) Kẻ tiếp tuyến Ax, chứng minh: BCEF nội tiếp. Từ đó chứng minh : Ax // IK
Cho tam giác ABC nhọn nội tiếp đường tròn (O) (AB < AC), đường tròn tâm M đường kính BC cắt AB, AC lần lượt tại F và E.Gọi H là giao điểm BE và CF, D là giao điểm của AH và BC.Vẽ đường kính AK của (O). a) Chứng minh AD là đường cao của tam giác ABC và tứ giác BFHD nội tiếp đường tròn. b) Đường thẳng EF cắt đường thẳng BC tại S, cắt (O) tại P và Q (nằm giữa S và Q). Chứng minh SP.SQ = SF.SE c) Gọi L là điểm đối xứng của C qua AK, AL cắt EF tại N.Chứng minh L thuộc (O) và DHNL nội tiếp.
giúp mình giải câu c. tứ giác DHNL nội tiếp